List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5964632/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Review: current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science, 2010, 45, 1-33.	1.7	2,042
2	On the use of nanocellulose as reinforcement in polymer matrix composites. Composites Science and Technology, 2014, 105, 15-27.	3.8	669
3	Carbon nanotube-based hierarchical composites: a review. Journal of Materials Chemistry, 2010, 20, 4751.	6.7	643
4	Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresource Technology, 2011, 102, 1988-1997.	4.8	472
5	Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials, 2008, 29, 47-57.	5.7	460
6	Surface characterization of flax, hemp and cellulose fibers; Surface properties and the water uptake behavior. Polymer Composites, 2002, 23, 872-894.	2.3	350
7	More Than Meets the Eye in Bacterial Cellulose: Biosynthesis, Bioprocessing, and Applications in Advanced Fiber Composites. Macromolecular Bioscience, 2014, 14, 10-32.	2.1	316
8	Hierarchical Composites Reinforced with Carbon Nanotube Grafted Fibers: The Potential Assessed at the Single Fiber Level. Chemistry of Materials, 2008, 20, 1862-1869.	3.2	312
9	High Internal Phase Emulsions Stabilized Solely by Functionalized Silica Particles. Angewandte Chemie - International Edition, 2008, 47, 8277-8279.	7.2	304
10	Highly Permeable Macroporous Polymers Synthesized from Pickering Medium and High Internal Phase Emulsion Templates. Advanced Materials, 2010, 22, 3588-3592.	11.1	270
11	Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Materials and Design, 2020, 187, 108397.	3.3	236
12	Surface Modification of Natural Fibers Using Bacteria: Depositing Bacterial Cellulose onto Natural Fibers To Create Hierarchical Fiber Reinforced Nanocomposites. Biomacromolecules, 2008, 9, 1643-1651.	2.6	226
13	High internal phase emulsion templates solely stabilised by functionalised titania nanoparticles. Chemical Communications, 2007, , 4274.	2.2	218
14	Interfacial Tension Measurements of the (H ₂ O + CO ₂) System at Elevated Pressures and Temperatures. Journal of Chemical & Engineering Data, 2010, 55, 4168-4175.	1.0	217
15	Multifunctional Structural Supercapacitor Composites Based on Carbon Aerogel Modified High Performance Carbon Fiber Fabric. ACS Applied Materials & Interfaces, 2013, 5, 6113-6122.	4.0	209
16	Carbon nanotube grafted carbon fibres: A study of wetting and fibre fragmentation. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1107-1114.	3.8	204
17	High Performance Cellulose Nanocomposites: Comparing the Reinforcing Ability of Bacterial Cellulose and Nanofibrillated Cellulose. ACS Applied Materials & Interfaces, 2012, 4, 4078-4086. 	4.0	202
18	Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties. Composites Science and Technology, 2009, 69, 2724-2733.	3.8	189

#	Article	IF	CITATIONS
19	Removal of oxidation debris from multi-walled carbon nanotubes. Chemical Communications, 2007, , 513-515.	2.2	179
20	Surface only modification of bacterial cellulose nanofibres with organic acids. Cellulose, 2011, 18, 595-605.	2.4	177
21	Particle-Stabilized Surfactant-Free Medium Internal Phase Emulsions as Templates for Porous Nanocomposite Materials:Â poly-Pickering-Foams. Langmuir, 2007, 23, 2398-2403.	1.6	169
22	Structural composite supercapacitors. Composites Part A: Applied Science and Manufacturing, 2013, 46, 96-107.	3.8	169
23	Surface characterization of natural fibers; surface properties and the water up-take behavior of modified sisal and coir fibers. Green Chemistry, 2001, 3, 100-107.	4.6	167
24	High-Porosity Macroporous Polymers Sythesized from Titania-Particle-Stabilized Medium and High Internal Phase Emulsions. Langmuir, 2010, 26, 8836-8841.	1.6	160
25	Tailoring mechanical properties of highly porous polymer foams: Silica particle reinforced polymer foams via emulsion templating. Polymer, 2006, 47, 4513-4519.	1.8	155
26	In search of a standard method for the characterisation of organic solvent nanofiltration membranes. Journal of Membrane Science, 2007, 291, 120-125.	4.1	153
27	Cellulose nanopapers as tight aqueous ultra-filtration membranes. Reactive and Functional Polymers, 2015, 86, 209-214.	2.0	147
28	Structural supercapacitor electrolytes based on bicontinuous ionic liquid–epoxy resin systems. Journal of Materials Chemistry A, 2013, 1, 15300.	5.2	143
29	Wetting behavior of flax fibers as reinforcement for polypropylene. Journal of Colloid and Interface Science, 2003, 263, 580-589.	5.0	136
30	Tough reinforced open porous polymer foams via concentrated emulsion templating. Polymer, 2006, 47, 7628-7635.	1.8	134
31	New Evidence for the Mechanism of the Pore Formation in Polymerising High Internal Phase Emulsions or Why polyHIPEs Have an Interconnected Pore Network Structure. Macromolecular Symposia, 2006, 242, 19-24.	0.4	129
32	Effect of iron on the surface, degradation and ion release properties of phosphate-based glass fibres. Acta Biomaterialia, 2005, 1, 553-563.	4.1	125
33	Zeta-potential and rejection rates of a polyethersulfone nanofiltration membrane in single salt solutions. Journal of Membrane Science, 2000, 165, 251-259.	4.1	121
34	Creating Hierarchical Structures in Renewable Composites by Attaching Bacterial Cellulose onto Sisal Fibers. Advanced Materials, 2008, 20, 3122-3126.	11.1	121
35	Interfacial tension measurements and modelling of (carbon dioxide+n-alkane) and (carbon) Tj ETQq1 1 0.784314 Fluids, 2010, 55, 743-754.	rgBT /Ove 1.6	erlock 10 T 120
36	Influence of fluorination on the properties of carbon fibres. Journal of Fluorine Chemistry, 1997, 84, 127-134.	0.9	115

#	Article	IF	CITATIONS
37	Nanopapers for organic solvent nanofiltration. Chemical Communications, 2014, 50, 5778-5781.	2.2	114
38	Open Porous Polymer Foams via Inverse Emulsion Polymerization:Â Should the Definition of High Internal Phase (Ratio) Emulsions Be Extended?. Macromolecules, 2006, 39, 2034-2035.	2.2	112
39	Renewable nanocomposite polymer foams synthesized from Pickering emulsion templates. Green Chemistry, 2009, 11, 1321.	4.6	110
40	Multifunctional structural energy storage composite supercapacitors. Faraday Discussions, 2014, 172, 81-103.	1.6	109
41	Crab vs. Mushroom: A Review of Crustacean and Fungal Chitin in Wound Treatment. Marine Drugs, 2020, 18, 64.	2.2	106
42	Phosphorylated nanocellulose papers for copper adsorption from aqueous solutions. International Journal of Environmental Science and Technology, 2016, 13, 1861-1872.	1.8	104
43	Green Composites as Panacea? Socio-Economic Aspects of Green Materials. Environment, Development and Sustainability, 2006, 8, 445-463.	2.7	101
44	Strong and Stiff: High-Performance Cellulose Nanocrystal/Poly(vinyl alcohol) Composite Fibers. ACS Applied Materials & Interfaces, 2016, 8, 31500-31504.	4.0	101
45	Atmospheric air pressure plasma treatment of lignocellulosic fibres: Impact on mechanical properties and adhesion to cellulose acetate butyrate. Composites Science and Technology, 2008, 68, 215-227.	3.8	99
46	Carbon nanotube grafted silica fibres: Characterising the interface at the single fibre level. Composites Science and Technology, 2010, 70, 393-399.	3.8	98
47	Emulsion and Foam Templating—Promising Routes to Tailorâ€Made Porous Polymers. Angewandte Chemie - International Edition, 2018, 57, 10024-10032.	7.2	98
48	Plant Fibers as Reinforcement for Green Composites. , 2005, , .		95
49	Carbon nanotube-enhanced polyurethane scaffolds fabricated by thermally induced phase separation. Journal of Materials Chemistry, 2008, 18, 1865.	6.7	95
50	Phase Behavior of Medium and High Internal Phase Water-in-Oil Emulsions Stabilized Solely by Hydrophobized Bacterial Cellulose Nanofibrils. Langmuir, 2014, 30, 452-460.	1.6	95
51	A Generalized Drop Length–Height Method for Determination of Contact Angle in Drop-on-Fiber Systems. Journal of Colloid and Interface Science, 1998, 197, 68-77.	5.0	93
52	Anisotropic Surface Energetics and Wettability of Macroscopic Form I Paracetamol Crystals. Langmuir, 2006, 22, 2760-2769.	1.6	93
53	Particleâ€Stabilized Materials: Dry Oils and (Polymerized) Nonâ€Aqueous Foams. Advanced Functional Materials, 2010, 20, 732-737	7.8	92
54	Leather-like material biofabrication using fungi. Nature Sustainability, 2021, 4, 9-16.	11.5	92

#	Article	IF	CITATIONS
55	Macroporous Polymers with Hierarchical Pore Structure from Emulsion Templates Stabilised by Both Particles and Surfactants. Macromolecular Rapid Communications, 2011, 32, 1563-1568.	2.0	91
56	Method for the preparation of cellulose acetate flat sheet composite membranes for forward osmosis—Desalination using MgSO4 draw solution. Desalination, 2011, 273, 299-307.	4.0	91
57	Chitin Nanopaper from Mushroom Extract: Natural Composite of Nanofibers and Glucan from a Single Biobased Source. ACS Sustainable Chemistry and Engineering, 2019, 7, 6492-6496.	3.2	90
58	Influence of Oxygen Plasma Treatment of PAN-Based Carbon Fibers on Their Electrokinetic and Wetting Properties. Journal of Colloid and Interface Science, 1999, 210, 60-72.	5.0	89
59	Crosslinked integrally skinned asymmetric polyaniline membranes for use in organic solvents. Journal of Membrane Science, 2009, 326, 635-642.	4.1	88
60	Lithium iron phosphate coated carbon fiber electrodes for structural lithium ion batteries. Composites Science and Technology, 2018, 162, 235-243.	3.8	87
61	Hierarchically porous carbon foams from pickering high internal phase emulsions. Carbon, 2016, 101, 253-260.	5.4	86
62	Nanocellulose enhanced interfaces in truly green unidirectional fibre reinforced composites. Composite Interfaces, 2007, 14, 753-762.	1.3	83
63	Carbon fibre reinforced poly(vinylidene fluoride): Impact of matrix modification on fibre/polymer adhesion. Composites Science and Technology, 2008, 68, 1766-1776.	3.8	83
64	New insights into the relationship between internal phase level of emulsion templates and gas–liquid permeability of interconnected macroporous polymers. Soft Matter, 2009, 5, 4780.	1.2	83
65	Interfacial Tension Measurements of the (H ₂ O + <i>n</i> -Decane + CO ₂) Ternary System at Elevated Pressures and Temperatures. Journal of Chemical & Engineering Data, 2011, 56, 4900-4908.	1.0	83
66	Investigation of the influence of acidic and basic surface groups on carbon fibres on the interfacial shear strength in an epoxy matrix by means of single-fibre pull-out test. Composites Science and Technology, 2001, 61, 599-605.	3.8	82
67	Activation of structural carbon fibres for potential applications in multifunctional structural supercapacitors. Journal of Colloid and Interface Science, 2013, 395, 241-248.	5.0	81
68	Microwave curing of carbon–epoxy composites: Penetration depth and material characterisation. Composites Part A: Applied Science and Manufacturing, 2015, 75, 18-27.	3.8	80
69	Towards a methodology for the effective surface modification of porous polymer scaffolds. Biomaterials, 2005, 26, 7537-7547.	5.7	79
70	Wetting behaviour, moisture up-take and electrokinetic properties of lignocellulosic fibres. Cellulose, 2007, 14, 115-127.	2.4	79
71	Hierarchical composites reinforced with robust short sisal fibre preforms utilising bacterial cellulose as binder. Composites Science and Technology, 2012, 72, 1479-1486.	3.8	79
72	Ion-responsive alginate based macroporous injectable hydrogel scaffolds prepared by emulsion templating. Journal of Materials Chemistry B, 2013, 1, 4736.	2.9	79

#	Article	IF	CITATIONS
73	Organic fouling behaviour of structurally and chemically different forward osmosis membranes – A study of cellulose triacetate and thin film composite membranes. Journal of Membrane Science, 2016, 520, 247-261.	4.1	79
74	Thermal oxidative cutting of multi-walled carbon nanotubes. Carbon, 2007, 45, 2341-2350.	5.4	78
75	Characterization of Several Polymer Surfaces by Streaming Potential and Wetting Measurements: Some Reflections on Acid–Base Interactions. Journal of Colloid and Interface Science, 1999, 217, 377-387.	5.0	75
76	Interconnected macroporous glycidyl methacrylate-grafted dextran hydrogels synthesised from hydroxyapatite nanoparticle stabilised high internal phase emulsion templates. Journal of Materials Chemistry, 2012, 22, 18824.	6.7	74
77	Hierarchical Composites Made Entirely from Renewable Resources. Journal of Biobased Materials and Bioenergy, 2011, 5, 1-16.	0.1	74
78	The development of a three-dimensional scaffold for ex vivo biomimicry of human acute myeloid leukaemia. Biomaterials, 2010, 31, 2243-2251.	5.7	73
79	Macroporous Polymers Obtained in Highly Concentrated Emulsions Stabilized Solely with Magnetic Nanoparticles. Langmuir, 2011, 27, 13342-13352.	1.6	73
80	Methods to determine surface energies of natural fibres: a review. Composite Interfaces, 2007, 14, 581-604.	1.3	71
81	Short sisal fibre reinforced bacterial cellulose polylactide nanocomposites using hairy sisal fibres as reinforcement. Composites Part A: Applied Science and Manufacturing, 2012, 43, 2065-2074.	3.8	70
82	Carbon foams from emulsion-templated reduced graphene oxide polymer composites: electrodes for supercapacitor devices. Journal of Materials Chemistry A, 2018, 6, 1840-1849.	5.2	70
83	Enhanced fracture toughness of hierarchical carbon nanotube reinforced carbon fibre epoxy composites with engineered matrix microstructure. Composites Science and Technology, 2019, 170, 85-92.	3.8	70
84	Basic surface oxides on carbon fibers. Carbon, 1999, 37, 1019-1027.	5.4	69
85	A new route to carbon black filled polyHIPEs. Soft Matter, 2006, 2, 337.	1.2	69
86	Fluorination of carbon fibres in atmospheric plasma. Carbon, 2007, 45, 775-784.	5.4	69
87	Mechanical, electrical and microstructural characterisation of multifunctional structural power composites. Journal of Composite Materials, 2015, 49, 1823-1834.	1.2	69
88	Surface properties of PAN-based carbon fibers tuned by anodic oxidation in different alkaline electrolyte systems. Applied Surface Science, 1999, 143, 45-55.	3.1	68
89	Solid polymer electrolyte-coated carbon fibres for structural and novel micro batteries. Composites Science and Technology, 2013, 89, 149-157.	3.8	68
90	Nanomaterials Derived from Fungal Sources—Is It the New Hype?. Biomacromolecules, 2020, 21, 30-55.	2.6	68

#	Article	IF	CITATIONS
91	Premature degradation of poly(α-hydroxyesters) during thermal processing of Bioglass®-containing composites. Acta Biomaterialia, 2010, 6, 756-762.	4.1	67
92	Long-term cytokine-free expansion of cord blood mononuclear cells in three-dimensional scaffolds. Biomaterials, 2011, 32, 9263-9270.	5.7	67
93	Tissue Engineering of Lung: The Effect of Extracellular Matrix on the Differentiation of Embryonic Stem Cells to Pneumocytes. Tissue Engineering - Part A, 2010, 16, 1515-1526.	1.6	66
94	Plant fibre-reinforced polymers: where do we stand in terms of tensile properties?. International Materials Reviews, 2017, 62, 441-464.	9.4	66
95	Hierarchical Polymerized High Internal Phase Emulsions Synthesized from Surfactant-Stabilized Emulsion Templates. Langmuir, 2013, 29, 5952-5961.	1.6	65
96	Study on surface and mechanical fiber characteristics and their effect on the adhesion properties to a polycarbonate matrix tuned by anodic carbon fiber oxidation. Composites Part A: Applied Science and Manufacturing, 1999, 30, 1351-1366.	3.8	64
97	Direct Measurement of the Wetting Behavior of Individual Carbon Nanotubes by Polymer Melts: The Key to Carbon Nanotubeâ^'Polymer Composites. Nano Letters, 2008, 8, 2744-2750.	4.5	64
98	Tailoring the mechanical performance of highly permeable macroporous polymers synthesized via Pickering emulsion templating. Soft Matter, 2011, 7, 6571.	1.2	64
99	Spiral-wound polyaniline membrane modules for organic solvent nanofiltration (OSN). Journal of Membrane Science, 2010, 349, 123-129.	4.1	61
100	Synthesis and characterisation of carbon nanotubes grown on silica fibres by injection CVD. Carbon, 2010, 48, 277-286.	5.4	61
101	Tough interconnected polymerized medium and high internal phase emulsions reinforced by silica particles. Journal of Polymer Science Part A, 2010, 48, 1979-1989.	2.5	61
102	Composition as a Means To Control Morphology and Properties of Epoxy Based Dual-Phase Structural Electrolytes. Journal of Physical Chemistry C, 2014, 118, 28377-28387.	1.5	60
103	Aligned unidirectional PLA/bacterial cellulose nanocomposite fibre reinforced PDLLA composites. Reactive and Functional Polymers, 2014, 85, 185-192.	2.0	60
104	Effects of surface plasma treatment on tribology of thermoplastic polymers. Polymer Engineering and Science, 2008, 48, 1971-1976.	1.5	59
105	Agricultural by-product suitability for the production of chitinous composites and nanofibers utilising Trametes versicolor and Polyporus brumalis mycelial growth. Process Biochemistry, 2019, 80, 95-102.	1.8	59
106	Anisotropic Surface Chemistry of Aspirin Crystals. Journal of Pharmaceutical Sciences, 2007, 96, 2134-2144.	1.6	58
107	Multifunctional structural supercapacitors for electrical energy storage applications. Journal of Composite Materials, 2014, 48, 1409-1416.	1.2	58
108	Reactive polyurethane carbon nanotube foams and their interactions with osteoblasts. Journal of Biomedical Materials Research - Part A, 2009, 88A, 65-73.	2.1	57

# Ar	Article	IF	CITATIONS
109 Hi Cł	High Internal Phase Emulsion Templating with Self-Emulsifying and Thermoresponsive Chitosan- <i>graft</i> -PNIPAM- <i>graft</i> -Oligoproline. Biomacromolecules, 2014, 15, 1777-1787.	2.6	57

110 Interfacial behavior between atmospheric-plasma-fluorinated carbon fibers and poly(vinylidene) Tj ETQq0 0 0 rgBT / Overlock 10 Tf 50 70

111	Polymerised high internal phase ionic liquid-in-oil emulsions as potential separators for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 9612.	5.2	56
112	Polymerised high internal phase emulsions for fluid separation applications. Current Opinion in Chemical Engineering, 2014, 4, 114-120.	3.8	56
113	Nanocomposite foams obtained by polymerization of high internal phase emulsions. Journal of Polymer Science Part A, 2008, 46, 5708-5714.	2.5	55
114	Microstructuring of Glasses. Springer Series in Materials Science, 2008, , .	0.4	55
115	Nanoporous asymmetric polyaniline films for filtration of organic solvents. Journal of Membrane Science, 2009, 330, 166-174.	4.1	55
116	Susceptibility of never-dried and freeze-dried bacterial cellulose towards esterification with organic acid. Cellulose, 2012, 19, 891-900.	2.4	54
117	Bio-based macroporous polymer nanocomposites made by mechanical frothing of acrylated epoxidised soybean oil. Green Chemistry, 2011, 13, 3117.	4.6	53
118	Injectable, Interconnected, Highâ€Porosity Macroporous Biocompatible Gelatin Scaffolds Made by Surfactantâ€Free Emulsion Templating. Macromolecular Rapid Communications, 2015, 36, 364-372.	2.0	53
119	Inverse Gas Chromatography of As-Received and Modified Carbon Nanotubes. Langmuir, 2009, 25, 8340-8348.	1.6	52
120	Self-reinforced cellulose nanocomposites. Cellulose, 2010, 17, 779-791.	2.4	52
121	Green polyurethane nanocomposites from soy polyol and bacterial cellulose. Journal of Materials Science, 2013, 48, 2167-2175.	1.7	52
122	Tailored for simplicity: creating high porosity, high performance bio-based macroporous polymers from foam templates. Green Chemistry, 2014, 16, 1931-1940.	4.6	52
123	"Brick-and-Mortar―Nanostructured Interphase for Glass-Fiber-Reinforced Polymer Composites. ACS Applied Materials & Interfaces, 2018, 10, 7352-7361.	4.0	52
124	Cellulose nanocrystals by acid vapour: towards more effortless isolation of cellulose nanocrystals. Faraday Discussions, 2017, 202, 315-330.	1.6	51
125	Waste-Derived Low-Cost Mycelium Nanopapers with Tunable Mechanical and Surface Properties. Biomacromolecules, 2019, 20, 3513-3523.	2.6	51
126	Continuous atmospheric plasma fluorination of carbon fibres. Composites Part A: Applied Science and Manufacturing, 2008, 39, 364-373.	3.8	50

#	Article	IF	CITATIONS
127	Recombinant biosynthesis of bacterial cellulose in genetically modified Escherichia coli. Bioprocess and Biosystems Engineering, 2018, 41, 265-279.	1.7	50
128	Anisotropic surface chemistry of crystalline pharmaceutical solids. AAPS PharmSciTech, 2006, 7, E12-E20.	1.5	49
129	Cross-Linked Bacterial Cellulose Networks Using Glyoxalization. ACS Applied Materials & Interfaces, 2011, 3, 490-499.	4.0	49
130	Bacterial cellulose as source for activated nanosized carbon for electric double layer capacitors. Journal of Materials Science, 2013, 48, 367-376.	1.7	48
131	Porous Bioactive Nanofibers via Cryogenic Solution Blow Spinning and Their Formation into 3D Macroporous Scaffolds. ACS Biomaterials Science and Engineering, 2016, 2, 1442-1449.	2.6	48
132	Carbon fibre-reinforced poly(ethylene glycol) diglycidylether based multifunctional structural supercapacitor composites for electrical energy storage applications. Journal of Composite Materials, 2016, 50, 2155-2163.	1.2	48
133	Hypercrosslinked polyHIPEs as precursors to designable, hierarchically porous carbon foams. Polymer, 2017, 115, 146-153.	1.8	48
134	Direct Interfacial Modification of Nanocellulose Films for Thermoresponsive Membrane Templates. ACS Applied Materials & Interfaces, 2016, 8, 2923-2927.	4.0	47
135	Continuous carbon nanotube synthesis on charged carbon fibers. Composites Part A: Applied Science and Manufacturing, 2018, 112, 525-538.	3.8	47
136	Inflatable Elastomeric Macroporous Polymers Synthesized from Medium Internal Phase Emulsion Templates. ACS Applied Materials & Interfaces, 2015, 7, 19243-19250.	4.0	46
137	Nitrate removal from water using a nanopaper ion-exchanger. Environmental Science: Water Research and Technology, 2016, 2, 117-124.	1.2	46
138	Nondestructive Technique for the Characterization of the Pore Size Distribution of Soft Porous Constructs for Tissue Engineering. Langmuir, 2006, 22, 3235-3242.	1.6	45
139	Surface and bulk properties of severely fluorinated carbon fibres. Journal of Fluorine Chemistry, 2007, 128, 1359-1368.	0.9	45
140	Macroporous polymers made from medium internal phase emulsion templates: Effect of emulsion formulation on the pore structure of polyMIPEs. Polymer, 2013, 54, 5511-5517.	1.8	45
141	Natural fibre-nanocellulose composite filters for the removal of heavy metal ions from water. Industrial Crops and Products, 2019, 133, 325-332.	2.5	44
142	Recent progress of 3D printed continuous fiber reinforced polymer composites based on fused deposition modeling: a review. Journal of Materials Science, 2021, 56, 12999.	1.7	44
143	Basic and acidic surface oxides on carbon fiber and their influence on the expected adhesion to polyamide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 159, 341-350.	2.3	43
144	Characterization of several modified jute fibers using zeta-potential measurements. Colloid and Polymer Science, 2000, 278, 229-235.	1.0	43

#	Article	IF	CITATIONS
145	Noncovalent Surface Modification of Cellulose Nanopapers by Adsorption of Polymers from Aprotic Solvents. Langmuir, 2017, 33, 5707-5712.	1.6	43
146	Fungal chitin-glucan nanopapers with heavy metal adsorption properties for ultrafiltration of organic solvents and water. Carbohydrate Polymers, 2021, 253, 117273.	5.1	43
147	Fluorinated carbon fibres and their suitability as reinforcement for fluoropolymers. Composites Science and Technology, 2007, 67, 2699-2706.	3.8	42
148	Surface modification of lignocellulosic fibres in atmospheric air pressure plasma. Green Chemistry, 2007, 9, 1057.	4.6	41
149	Mapping local microstructure and mechanical performance around carbon nanotube grafted silica fibres: Methodologies for hierarchical composites. Nanoscale, 2011, 3, 4759.	2.8	41
150	Carbohydrate derived copoly(lactide) as the compatibilizer for bacterial cellulose reinforced polylactide nanocomposites. Composites Science and Technology, 2012, 72, 1646-1650.	3.8	41
151	Antagonistic Effects between Magnetite Nanoparticles and a Hydrophobic Surfactant in Highly Concentrated Pickering Emulsions. Langmuir, 2014, 30, 5064-5074.	1.6	40
152	Electrografting of thiophene, carbazole, pyrrole and their copolymers onto carbon fibers: electrokinetic measurements, surface composition and morphology. Synthetic Metals, 2001, 123, 391-401.	2.1	39
153	Interfaces in Cross-Linked and Grafted Bacterial Cellulose/Poly(Lactic Acid) Resin Composites. Journal of Polymers and the Environment, 2012, 20, 916-925.	2.4	39
154	Macroporous polymer nanocomposites synthesised from high internal phase emulsion templates stabilised by reduced graphene oxide. Polymer, 2014, 55, 395-402.	1.8	39
155	On the drag reduction effect and shear stability of improved acrylamide copolymers for enhanced hydraulic fracturing. Chemical Engineering Science, 2016, 146, 135-143.	1.9	39
156	Atmospheric Plasma Treatment of Porous Polymer Constructs for Tissue Engineering Applications. Macromolecular Bioscience, 2007, 7, 315-327.	2.1	38
157	Improving the multifunctional behaviour of structural supercapacitors by incorporating chemically activated carbon fibres and mesoporous silica particles as reinforcement. Journal of Composite Materials, 2018, 52, 3085-3097.	1.2	38
158	Increasing carbon fiber composite strength with a nanostructured "brick-and-mortar―interphase. Materials Horizons, 2018, 5, 668-674.	6.4	38
159	Hybrid Nanomaterial Complexes for Advanced Phage-guided Gene Delivery. Molecular Therapy - Nucleic Acids, 2014, 3, e185.	2.3	37
160	Thermosetting hierarchical composites with high carbon nanotube loadings: En route to high performance. Composites Science and Technology, 2016, 127, 134-141.	3.8	37
161	Polyaniline hollow fibres for organic solvent nanofiltration. Chemical Communications, 2008, , 6324.	2.2	36
162	A versatile, solvent-free methodology for the functionalisation of carbon nanotubes. Chemical Science, 2010, 1, 603.	3.7	36

#	Article	IF	CITATIONS
163	High Performance Composites with Active Stiffness Control. ACS Applied Materials & Interfaces, 2013, 5, 9111-9119.	4.0	36
164	Porous Copolymers of Îμ-Caprolactone as Scaffolds for Tissue Engineering. Macromolecules, 2013, 46, 8136-8143.	2.2	35
165	Mushroom-derived chitosan-glucan nanopaper filters for the treatment of water. Reactive and Functional Polymers, 2020, 146, 104428.	2.0	35
166	Electrografting of poly(carbazole-co-acrylamide) onto several carbon fibers. Synthetic Metals, 2001, 123, 411-423.	2.1	34
167	Effect of hot water immersion on the performance of carbon reinforced unidirectional poly(ether) Tj ETQq1 1 0.7 Science and Manufacturing, 2007, 38, 407-426.	84314 rgE 3.8	3T /Overlock 34
168	Manufacturing Carbon Nanotube/PVDF Nanocomposite Powders. Macromolecular Materials and Engineering, 2008, 293, 188-193.	1.7	33
169	lce-microsphere templating to produce highly porous nanocomposite PLA matrix scaffolds with pores selectively lined by bacterial cellulose nano-whiskers. Composites Science and Technology, 2010, 70, 1879-1888.	3.8	33
170	The use of a single-fibre pull-out test to investigate the influence of acidic and basic surface groups on carbon fibres on the adhesion to poly(phenylene sulfide) and matrix-morphology-dependent fracture behaviour. Composites Science and Technology, 2001, 61, 1703-1710.	3.8	32
171	Title is missing!. Journal of Materials Science, 2002, 37, 461-471.	1.7	32
172	Adhesion and friction behavior between fluorinated carbon fibers and poly (vinylidene fluoride). Journal of Materials Science, 2003, 38, 4965-4972.	1.7	32
173	Continuous Atmospheric Plasma Oxidation of Carbon Fibres: Influence on the Fibre Surface and Bulk Properties and Adhesion to Polyamide 12. Plasma Chemistry and Plasma Processing, 2010, 30, 471-487.	1.1	31
174	Adhesion: Comparison Between Physico-chemical Expected and Measured Adhesion of Oxygen-plasma-treated Carbon Fibers and Polycarbonate. Journal of Adhesion, 2000, 73, 19-42.	1.8	30
175	An XPS study of pulsed plasma polymerised allyl alcohol film growth on polyurethane. Applied Surface Science, 2006, 252, 8203-8211.	3.1	30
176	Polymerised high internal phase emulsion cement hybrids: Macroporous polymer scaffolds for setting cements. Cement and Concrete Research, 2011, 41, 443-450.	4.6	29
177	Bacterial Cellulose Nanopaper as Reinforcement for Polylactide Composites: Renewable Thermoplastic NanoPaPreg. Macromolecular Rapid Communications, 2014, 35, 1640-1645.	2.0	29
178	A comparative study of the effects of different bioactive fillers in PLGA matrix composites and their suitability as bone substitute materials: A thermo-mechanical and in vitro investigation. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 50, 277-289.	1.5	29
179	Understanding the Dispersion and Assembly of Bacterial Cellulose in Organic Solvents. Biomacromolecules, 2016, 17, 1845-1853.	2.6	29
180	Investigation of the influence of surface-activated carbon fibres on debonding energy and frictional stress in polymer-matrix composites by the micro-indentation technique. Composites Science and Technology, 2001, 61, 2511-2518.	3.8	28

#	Article	IF	CITATIONS
181	Wet impregnation as route to unidirectional carbon fibre reinforced thermoplastic composites manufacturing. Plastics, Rubber and Composites, 2011, 40, 100-107.	0.9	28
182	Shear layers in the turbulent pipe flow of drag reducing polymer solutions. Chemical Engineering Science, 2012, 72, 142-154.	1.9	28
183	High performance carbon fibre reinforced epoxy composites with controllable stiffness. Composites Science and Technology, 2014, 105, 134-143.	3.8	28
184	Nacre-nanomimetics: Strong, Stiff, and Plastic. ACS Applied Materials & Interfaces, 2015, 7, 26783-26791.	4.0	28
185	Applying a potential difference to minimise damage to carbon fibres during carbon nanotube grafting by chemical vapour deposition. Nanotechnology, 2017, 28, 305602.	1.3	28
186	Mechanically whipped phenolic froths as versatile templates for manufacturing phenolic and carbon foams. Materials and Design, 2019, 168, 107658.	3.3	28
187	Surface properties of chitin-glucan nanopapers from Agaricus bisporus. International Journal of Biological Macromolecules, 2020, 148, 677-687.	3.6	28
188	Ionic Liquids as Internal Phase for Nonâ€Aqueous PolyHIPEs. Macromolecular Rapid Communications, 2011, 32, 1899-1904.	2.0	27
189	Unidirectional carbon fibre reinforced polyamide-12 composites with enhanced strain to tensile failure by introducing fibre waviness. Composites Part A: Applied Science and Manufacturing, 2016, 87, 186-193.	3.8	27
190	Upgrading flax nonwovens: Nanocellulose as binder to produce rigid and robust flax fibre preforms. Composites Part A: Applied Science and Manufacturing, 2016, 83, 63-71.	3.8	27
191	Hybrid sol–gel inorganic/gelatin porous fibres via solution blow spinning. Journal of Materials Science, 2017, 52, 9066-9081.	1.7	27
192	Influence of biological origin on the tensile properties of cellulose nanopapers. Cellulose, 2021, 28, 6619.	2.4	27
193	Electrocoating of carbon fibres: A route for interface control in carbon fibre reinforced poly methylmethacrylate?. Composites Science and Technology, 2005, 65, 1564-1573.	3.8	26
194	Deconvolution of the structural and chemical surface properties of carbon nanotubes by inverse gas chromatography. Carbon, 2012, 50, 3416-3421.	5.4	26
195	Plastic to elastic: Fungi-derived composite nanopapers with tunable tensile properties. Composites Science and Technology, 2020, 198, 108327.	3.8	26
196	Surface characterization of glass fibers made from silicate waste: Zeta-potential and contact angle measurements. Journal of Materials Science, 2004, 39, 401-412.	1.7	25
197	Greener Surface Treatments of Natural Fibres for the Production of Renewable Composite Materials. , 2011, , 155-178.		25
198	Highly permeable macroporous polymers via controlled agitation of emulsion templates. Chemical Engineering Science, 2015, 137, 786-795.	1.9	23

#	Article	IF	CITATIONS
199	Mechanical and physical performance of carbon aerogel reinforced carbon fibre hierarchical composites. Composites Science and Technology, 2019, 182, 107720.	3.8	23
200	Mechanisms of scratching frictions and damage maps for rubber compounds. Wear, 2005, 259, 651-660.	1.5	22
201	Thermoresponsive Macroporous Scaffolds Prepared by Emulsion Templating. Macromolecular Rapid Communications, 2012, 33, 1833-1839.	2.0	22
202	pH-triggered phase inversion and separation of hydrophobised bacterial cellulose stabilised Pickering emulsions. Reactive and Functional Polymers, 2014, 85, 208-213.	2.0	22
203	High-Surface-Area, Emulsion-Templated Carbon Foams by Activation of polyHIPEs Derived from Pickering Emulsions. Materials, 2016, 9, 776.	1.3	22
204	Deployable, shape memory carbon fibre composites without shape memory constituents. Composites Science and Technology, 2017, 145, 96-104.	3.8	22
205	Rapid Water Softening with TEMPO-Oxidized/Phosphorylated Nanopapers. Nanomaterials, 2019, 9, 136.	1.9	22
206	High porosity cellulose nanopapers as reinforcement in multi-layer epoxy laminates. Composites Part A: Applied Science and Manufacturing, 2020, 131, 105779.	3.8	22
207	Electrografting of poly (carbazole-co-acrylamide) onto highly oriented pyrolytic graphite. A cyclovoltammetric, atomic force microscopic and ellipsometric study. Surface and Coatings Technology, 2001, 145, 164-175.	2.2	21
208	Better together: synergy in nanocellulose blends. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170043.	1.6	21
209	Structural Batteries for Aeronautic Applications—State of the Art, Research Gaps and Technology Development Needs. Aerospace, 2022, 9, 7.	1.1	21
210	Liquid–Liquid Extraction within Emulsion Templated Macroporous Polymers. Industrial & Engineering Chemistry Research, 2015, 54, 7284-7291.	1.8	20
211	Inducing pH Responsiveness via Ultralow Thiol Content in Polyacrylamide (Micro)Gels with Labile Crosslinksâ€. Journal of Physical Chemistry B, 2007, 111, 8655-8662.	1.2	19
212	Thermosetting nanocomposites with high carbon nanotube loadings processed by a scalable powder based method. Composites Science and Technology, 2016, 127, 62-70.	3.8	19
213	Frothed black liquor as a renewable cost effective precursor to low-density lignin and carbon foams. Reactive and Functional Polymers, 2018, 132, 145-151.	2.0	19
214	Air Templated Macroporous Epoxy Foams with Silica Particles as Property-Defining Additive. ACS Applied Polymer Materials, 2019, 1, 335-343.	2.0	19
215	Bacterial nanocellulose papers with high porosity for optimized permeance and rejection of nm-sized pollutants. Carbohydrate Polymers, 2021, 251, 117130.	5.1	19
216	Effect of Atmospheric Air Pressure Plasma Treatment on the Thermal Behaviour of Natural Fibres and Dynamical Mechanical Properties of Randomly-Oriented Short Fibre Composites. Journal of Biobased Materials and Bioenergy, 2008, 2, 264-272.	0.1	18

#	Article	IF	CITATIONS
217	Polyacrylamide Containing Weak Temperature Labile Azo Links in the Polymer Backbone. Macromolecules, 2010, 43, 6469-6475.	2.2	18
218	Effectiveness of Emulsion-Templated Macroporous Polymer Micromixers Characterized by the Bourne Reaction. Industrial & Engineering Chemistry Research, 2015, 54, 5974-5981.	1.8	18
219	Robust macroporous polymers: Using polyurethane diacrylate as property defining crosslinker. Polymer, 2016, 97, 598-603.	1.8	18
220	Multi-layer nanopaper based composites. Cellulose, 2017, 24, 1759-1773.	2.4	18
221	On the BET Surface Area of Nanocellulose Determined Using Volumetric, Gravimetric and Chromatographic Adsorption Methods. Frontiers in Chemical Engineering, 2021, 3, .	1.3	18
222	Throughâ€ŧhickness plasma modification of biodegradable and nonbiodegradable porous polymer constructs. Journal of Biomedical Materials Research - Part A, 2008, 87A, 632-642.	2.1	17
223	Efficient continuous removal of nitrates from water with cationic cellulose nanopaper membranes. Resource-efficient Technologies, 2017, 3, 22-28.	0.1	17
224	Micropatterned, macroporous polymer springs for capacitive energy harvesters. Polymer, 2017, 126, 419-424.	1.8	17
225	Towards separator-free structural composite supercapacitors. Composites Science and Technology, 2022, 217, 109126.	3.8	17
226	Repurposing Fischer-Tropsch and natural gas as bridging technologies for the energy revolution. Energy Conversion and Management, 2022, 267, 115882.	4.4	17
227	Electrokinetic and mechanical characterization of UV induced crosslinked acrylic copolymers. Progress in Organic Coatings, 1999, 37, 117-129.	1.9	16
228	Study on surface- and mechanical fiber characteristics and their effect on epoxy composite properties tuned by continuous anodic carbon fiber oxidation. Journal of Adhesion Science and Technology, 2000, 14, 661-690.	1.4	16
229	High Internal Phase Emulsions Stabilized Solely by Functionalized Silica Particles. Angewandte Chemie - International Edition, 2009, 48, 632-632.	7.2	16
230	Novel Drag-Reducing Agents for Fracturing Treatments Based on Polyacrylamide Containing Weak Labile Links in the Polymer Backbone. SPE Journal, 2012, 17, 924-930.	1.7	16
231	Non-aqueous high internal phase emulsion templates for synthesis of macroporous polymers in situ filled with cyclic carbonate electrolytes. RSC Advances, 2014, 4, 11512-11519.	1.7	16
232	Liquid Screen: A Novel Method To Produce an In-Situ Gravel Pack. SPE Journal, 2014, 19, 437-442.	1.7	16
233	Modified chitosan emulsifiers: small compositional changes produce vastly different high internal phase emulsion types. Journal of Materials Chemistry B, 2015, 3, 4118-4122.	2.9	16
234	One-pot synthesis of supported hydrogel membranes via emulsion templating. Reactive and Functional Polymers, 2017, 114, 104-109.	2.0	16

#	Article	IF	CITATIONS
235	Polystyrene-grafted Carbon Fibers: Surface Properties and Adhesion to Polystyrene. Journal of Thermoplastic Composite Materials, 2005, 18, 307-331.	2.6	15
236	Self-cleaning anatase nanorods: photocatalytic removal of structure directing agents and subsequent surface modification. Journal of Materials Chemistry, 2008, 18, 3448.	6.7	15
237	Ductile unidirectional continuous rayon fibre-reinforced hierarchical composites. Composites Part A: Applied Science and Manufacturing, 2016, 90, 633-641.	3.8	15
238	Highâ€₽erformance Polymer Foams by Thermally Induced Phase Separation. Macromolecular Rapid Communications, 2020, 41, e2000110.	2.0	15
239	Stretchable Polymerized High Internal Phase Emulsion Separators for High Performance Soft Batteries. Advanced Energy Materials, 2020, 10, 2000467.	10.2	15
240	Preparation and characterization of surfactant-free stimuli-sensitive microgel dispersions. Journal of Applied Polymer Science, 2007, 104, 1912-1919.	1.3	14
241	Carbon nanotube enhanced carbon Fibre-Poly(ether ether ketone) interfaces in model hierarchical composites. Composites Science and Technology, 2022, 221, 109327.	3.8	14
242	Investigations on sub-structures within cavities of surface imprinted polymers using AFM and PF-QNM. Soft Matter, 2022, 18, 2245-2251.	1.2	14
243	Electrokinetic and contact angle measurements of grafted carbon fibers. Colloid and Polymer Science, 1998, 276, 1110-1116.	1.0	13
244	Characterization of fluorinated PAN-based carbon fibers by zeta-potential measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 159, 331-339.	2.3	13
245	Optimization of the adhesion of fiber-optic strain sensors embedded in cement matrices; a study into long-term fiber strength. Structural Control and Health Monitoring, 2000, 7, 51-76.	0.4	13
246	Tailoring Cell Behavior on Polymers by the Incorporation of Titanium Doped Phosphate Glass Filler. Advanced Engineering Materials, 2010, 12, B298.	1.6	13
247	Improving the ply/interleaf interface in carbon fibre reinforced composites with variable stiffness. Composites Science and Technology, 2016, 128, 185-192.	3.8	13
248	Additive Manufactured Carbon Nanotube/Epoxy Nanocomposites for Heavy-Duty Applications. ACS Applied Polymer Materials, 2021, 3, 93-97.	2.0	13
249	Wettability of carbon nanotube-grafted carbon fibers and their interfacial properties in polypropylene thermoplastic composite. Composites Part A: Applied Science and Manufacturing, 2022, 159, 106993.	3.8	13
250	Effect of bulk deformation on rubber adhesion. Wear, 2007, 263, 1016-1022.	1.5	12
251	A comparative study of fibre/matrix interface in glass fibre reinforced polyvinylidene fluoride composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 413, 58-64.	2.3	12
252	Improving the adhesion between carbon fibres and an elastomer matrix using an acrylonitrile containing atmospheric plasma treatment. Composite Interfaces, 2013, 20, 761-782.	1.3	12

#	Article	IF	CITATIONS
253	Emulsion templated resilient macroporous elastomers. Polymer, 2020, 186, 122023.	1.8	12
254	Excellence in Excrements: Upcycling of Herbivore Manure into Nanocellulose and Biogas. ACS Sustainable Chemistry and Engineering, 2021, 9, 15506-15513.	3.2	12
255	Environmental life cycle assessment of nano-cellulose and biogas production from manure. Journal of Environmental Management, 2022, 314, 115093.	3.8	12
256	Wetting of bioactive glass surfaces by poly(α-hydroxyacid) melts: interaction between Bioglass® and biodegradable polymers. E-Polymers, 2005, 5, .	1.3	11
257	Manufacturing Of Robust Natural Fiber Preforms Utilizing Bacterial Cellulose as Binder. Journal of Visualized Experiments, 2014, , .	0.2	11
258	Interfacial Adhesion and Mechanical Properties of Wood-Polymer Hybrid Composites Prepared by Injection Molding. Polymers, 2021, 13, 2849.	2.0	11
259	Unidirectional carbon fibre reinforced poly (vinylidene fluoride): Impact of atmospheric plasma on composite performance. Composites Part A: Applied Science and Manufacturing, 2011, 42, 453-461.	3.8	10
260	Fully Reversible pHâ€Triggered Network Formation of Amphoteric Polyelectrolyte Hydrogels. Advanced Functional Materials, 2011, 21, 172-176.	7.8	10
261	Bacterial NanoCellulose as Reinforcement forÂPolymer Matrices. , 2016, , 109-122.		10
262	Property and Shape Modulation of Carbon Fibers Using Lasers. ACS Applied Materials & Interfaces, 2016, 8, 16351-16358.	4.0	10
263	On the link between experimentallyâ€measured turbulence quantities and polymerâ€induced drag reduction in pipe flows. AICHE Journal, 2019, 65, e16662.	1.8	10
264	Morphology and properties of foamed high crystallinity <scp>PEEK</scp> prepared by high temperature thermally induced phase separation. Journal of Applied Polymer Science, 2022, 139, 51423.	1.3	10
265	Are hierarchical composite structures the way forward to improve the properties of truly green composites?. EXPRESS Polymer Letters, 2008, 2, 687-687.	1.1	10
266	Effects of fibroblast growth factors on the differentiation of the pulmonary progenitors from murine embryonic stem cells. Experimental Lung Research, 2010, 36, 307-320.	0.5	9
267	Ex vivo Mimicry of Normal and Abnormal Human Hematopoiesis. Journal of Visualized Experiments, 2012, , .	0.2	9
268	Development of novel composites through fibre and interface/interphase modification. IOP Conference Series: Materials Science and Engineering, 2016, 139, 012001.	0.3	9
269	Effects of Contact Angle and Flocculation of Particles of Oligomer of Tetrafluoroethylene on Oil Foaming. Frontiers in Chemistry, 2018, 6, 435.	1.8	9
270	The influence of crystallization conditions on the macromolecular structure and strength of Î ³ -polypropylene. Thermochimica Acta, 2019, 677, 131-138.	1.2	9

#	Article	IF	CITATIONS
271	Computational analysis of conductivity contributions in an ionic liquid mixture of 1-ethyl-3-methylimidazolium dicyanamide and tetrafluoroborate. Journal of Molecular Liquids, 2019, 288, 110993.	2.3	9
272	Emulsion-Templated Macroporous Polymer Micromixers. Industrial & Engineering Chemistry Research, 2021, 60, 14013-14025.	1.8	9
273	Effect of Specific Interactions on Structureâ€Property Relationships of Thermoplastic IPNs Based on Polyurethane and Styreneâ€ <i>co</i> â€Acrylic Acid Ionomers. Macromolecular Symposia, 2007, 254, 233-239.	0.4	8
274	Atmospheric plasma fluorination as a means to improve the mechanical properties of short-carbon fibre reinforced poly (vinylidene fluoride). Composites Part A: Applied Science and Manufacturing, 2010, 41, 1115-1122.	3.8	8
275	Synergy of matrix and fibre modification on adhesion between carbon fibres and poly(vinylidene) Tj ETQq1 1 0.78	4314 rgB1	[<mark>/</mark> 0verlock]
276	POLYHYDROXYALKANOATES (PHAs) FOR TISSUE ENGINEERING APPLICATIONS: BIOTRANSFORMATION OF PALM OIL MILL EFFLUENT (POME) TO VALUE-ADDED POLYMERS. Jurnal Teknologi (Sciences and) Tj ETQq0 0 0 rg	BT0/Øverlo	c ks 10 Tf 50
277	The Effect of Polymorphism on the Kinetics of Adsorption and Degradation: A Case of Hydrogen Chloride Vapor on Cellulose. Advanced Sustainable Systems, 2018, 2, 1800026.	2.7	8
278	Effect of Plasma-Treatment of Interleaved Thermoplastic Films on Delamination in Interlayer Fibre Hybrid Composite Laminates. Polymers, 2020, 12, 2834.	2.0	8
279	A perspective: Is viscosity the key to open the next door for foam templating?. Reactive and Functional Polymers, 2021, 162, 104877.	2.0	8
280	Green Chemical Modifications of Nanocellulose for Use in Composites. Materials and Energy, 2014, , 7-21.	2.5	7
281	Hierarchical carbon fibre composites incorporating high loadings of carbon nanotubes. Composites Science and Technology, 2022, 222, 109369.	3.8	7
282	Impact of inâ€line atmospheric plasma fluorination of carbon fibers on the performance of unidirectional, carbon fiberâ€reinforced polyvinylidene fluoride. Advances in Polymer Technology, 2010, 29, 86-97.	0.8	6
283	THE EFFECT OF SURFACE HETEROGENEITY ON WETTABILITY OF POROUS THREE DIMENSIONAL (3-D) SCAFFOLDS OF POLY(3-HYDROXYBUTYRIC ACID) (PHB) AND POLY(3-HYDROXYBUTYRIC-CO-3-HYDROXYVALERIC ACID) (PHBV). Jurnal Teknologi (Sciences and) Tj ETQq1 1 0.3	78 4 314 rg	B ^f /Overlo <mark>c</mark> l
284	High-velocity stretching of polyolefin tapes. Polymer Testing, 2020, 81, 106228.	2.3	6
285	Influence of the α-relaxation on the high-velocity stretchability of isotactic polypropylene. Polymer, 2020, 200, 122593.	1.8	6
286	Recent Progress in Natural Fibre Composites: Selected Papers from the 3rd International Conference on Innovative Natural Fibre Composites for Industrial Applications, Ecocomp 2011 and BEPS 2011. Journal of Biobased Materials and Bioenergy, 2012, 6, 343-345.	0.1	6
287	An approach for the scalable production of macroporous polymer beads. Journal of Colloid and Interface Science, 2022, 616, 834-845.	5.0	6
288	Reflectance FTIR and SEM characterization of poly[N-vinylcarbazole-co-methylmethacrylate] electrografted carbon fiber surface: current density effect. Journal of Materials Science, 2006, 41, 389-398.	1.7	5

#	Article	IF	CITATIONS
289	In-situ preparation of polymer scaffolds in retarded cement slurries: An emulsion templating approach for rapid, on-demand strength development. Cement and Concrete Composites, 2012, 34, 337-341.	4.6	5
290	Emulsion-templated macroporous polymer/polymer composites with switchable stiffness. Pure and Applied Chemistry, 2014, 86, 203-213.	0.9	5
291	Emulsion-templated flexible epoxy foams. Polymer, 2021, 215, 123380.	1.8	5
292	An integrated method for measuring gas permeability and diffusivity of porous solids. Chemical Engineering Science, 2020, 223, 115725.	1.9	5
293	Science Babel: Does the lack of a common terminology in the field of emulsion templating hinder progress?. EXPRESS Polymer Letters, 2010, 4, 196-196.	1.1	5
294	Polymerised high internal phase emulsion micromixers for continuous emulsification. Chemical Engineering Science, 2022, 252, 117296.	1.9	5
295	High- <i>k</i> dielectric screen-printed inks for mechanical energy harvesting devices. Materials Advances, 2022, 3, 1780-1790.	2.6	5
296	Assessing shear, tensile and fracture properties of macroporous nanocomposites using the Arcan test. Polymer Testing, 2022, 107, 107490.	2.3	5
297	Characterisation of â€~wet' polymer surfaces for tissue engineering applications: Are flat surfaces a suitable model for complex structures?. E-Polymers, 2005, 5, .	1.3	4
298	Single step functionalization of celluloses with differing degrees of reactivity as a route for <i>in situ</i> production of all-cellulose nanocomposites. Nanocomposites, 2015, 1, 214-222.	2.2	4
299	Solid epoxy resin systems for automated composite manufacturing. Composites Part A: Applied Science and Manufacturing, 2021, 142, 106205.	3.8	4
300	Grow it yourself composites: delignification and hybridisation of lignocellulosic material using animals and fungi. Green Chemistry, 2021, 23, 7506-7514.	4.6	4
301	Pore Interconnectivity Analysis of Porous Three Dimensional Scaffolds of Poly (3-Hydroxybutyric) Tj ETQq1 I Staining Method. Sains Malaysiana, 2015, 44, 1351-1356.	. 0.784314 rgBT 0.3	/Overlock 1 4
302	Permeable emulsion-templated porous polyepoxides. Polymer, 2022, 240, 124476.	1.8	4
303	Emulsions―und Schaumtemplatierung – vielversprechende Methoden zur Herstellung maßgeschneiderter poröser Polymere. Angewandte Chemie, 2018, 130, 10176-10186.	1.6	3
304	Synthesis of epoxidized poly(ester carbonate)- <i>b</i> -polyimide- <i>b</i> -poly(ester carbonate): reactive single-walled carbon nanotube dispersants enable synergistic reinforcement around multi-walled nanotube-grafted carbon fibers. Polymer Chemistry, 2019, 10, 1324-1334.	1.9	3
305	Functionalized Poly(<scp>D</scp> , <scp>L</scp> â€lactide) for Pulmonary Epithelial Cell Culture. Advanced Engineering Materials, 2010, 12, B101.	1.6	2
306	Colloidal and Nanocellulose-Stabilized Emulsions. Materials and Energy, 2014, , 185-196.	2.5	2

#	Article	IF	CITATIONS
307	High-Velocity Stretching of Renewable Polymer Blends. Journal of Polymers and the Environment, 2021, 29, 3509-3524.	2.4	2
308	Interfacial Adhesion and Mechanical Properties of Wood-Polymer Hybrid Composites Prepared by Injection Molding. Polymers, 2021, 13, .	2.0	2
309	Hydroxyapatite Pickering PolyHIPEs And "Thermoâ€HIPEs As Injectable Scaffolds For Tissue Engineering. Materials Research Society Symposia Proceedings, 2012, 1376, 1.	0.1	1
310	Advanced Bacterial Cellulose Composites. Materials and Energy, 2014, , 147-164.	2.5	1
311	Towards robust synchronous belts: influence of surface characteristics on interfacial adhesion. Composite Interfaces, 2022, 29, 1145-1159.	1.3	1
312	<title>How to achieve the desired strain transfer for fibre optic microdeformation measurements in cementitious building materials at early ages</title> . , 1998, , .		0
313	Particle-Stabilized Materials: Particle-Stabilized Materials: Dry Oils and (Polymerized) Non-Aqueous Foams (Adv. Funct. Mater. 5/2010). Advanced Functional Materials, 2010, 20, NA-NA.	7.8	Ο
314	Bionanocomposites: Processing Methods, Characterization, and Properties. Materials and Energy, 2014, , 1-5.	2.5	0
315	Macromol. Rapid Commun. 19/2014. Macromolecular Rapid Communications, 2014, 35, 1639-1639.	2.0	Ο
316	Wettability: Plasma Treatment Effects. , 0, , 7666-7683.		0
317	Printed macroporous polymers with complex structures and shapes. AIP Conference Proceedings, 2015, , .	0.3	Ο
318	Added function – Added value: Multifunctional high-performance composites. EXPRESS Polymer Letters, 2015, 9, 489-489.	1.1	0
319	Bacterial Cellulose Reinforced Flax Fibre Composites: Effect of Nanocellulose Loading on Composite Properties. Materials Science Forum, 2015, 825-826, 1063-1067.	0.3	0
320	<i>A Special Issue on</i> Innovative Natural Fibre Composites for Industrial Applications. Journal of Biobased Materials and Bioenergy, 2009, 3, 213-214.	0.1	0
321	Long-Term in Vitro Cytokine-Free and Serum-Free Culture of Human Cord Blood Mononuclear Cells in a Three-Dimensional Scaffold Blood, 2009, 114, 503-503.	0.6	0
322	Effects of Single-Agent, Low Dose Exogenous Erythropoietin In a Long-Term In Vitro serum-Free 3D Culture of Human Cord Blood Mononuclear Cells for Directed Erythropoiesis. Blood, 2010, 116, 341-341.	0.6	0
323	Hype about High Internal Phase Emulsion templating: Adding particles makes all the difference. EXPRESS Polymer Letters, 2012, 6, 953-953.	1.1	0
324	Preparation of divinyl esters by transvinylation between vinyl acetate and dicarboxylic acids. Arkivoc, 2016, 2016, 23-35.	0.3	0

#	Article	IF	CITATIONS
325	Foam Templating: A Greener Route to Porous Polymers. ACS Symposium Series, 2020, , 99-118.	0.5	0