Sheng Gong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5964462/publications.pdf

Version: 2024-02-01

19	1,353	12	19
papers	citations	h-index	g-index
20	20	20	2059
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sulfur/Oxygen Codoped Porous Hard Carbon Microspheres for Highâ€Performance Potassiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1800171.	19.5	363
2	Lithium Chlorides and Bromides as Promising Solidâ€State Chemistries for Fast Ion Conductors with Good Electrochemical Stability. Angewandte Chemie - International Edition, 2019, 58, 8039-8043.	13.8	322
3	Boron-Doped Graphene as a Promising Anode Material for Potassium-Ion Batteries with a Large Capacity, High Rate Performance, and Good Cycling Stability. Journal of Physical Chemistry C, 2017, 121, 24418-24424.	3.1	118
4	C3B monolayer as an anchoring material for lithium-sulfur batteries. Carbon, 2018, 129, 38-44.	10.3	105
5	Co-doped 1T-MoS2 nanosheets embedded in N, S-doped carbon nanobowls for high-rate and ultra-stable sodium-ion batteries. Nano Research, 2019, 12, 2218-2223.	10.4	88
6	Zero-strain K _{0.6} Mn ₁ F _{2.7} hollow nanocubes for ultrastable potassium ion storage. Energy and Environmental Science, 2018, 11, 3033-3042.	30.8	87
7	Charting lattice thermal conductivity for inorganic crystals and discovering rare earth chalcogenides for thermoelectrics. Energy and Environmental Science, 2021, 14, 3559-3566.	30.8	51
8	Hydrogenated Na ₂ Ti ₃ O ₇ Epitaxially Grown on Flexible N-Doped Carbon Sponge for Potassium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 37974-37980.	8.0	45
9	Ground-State Structure of YN ₂ Monolayer Identified by Global Search. Journal of Physical Chemistry C, 2017, 121, 10258-10264.	3.1	38
10	Predicting charge density distribution of materials using a local-environment-based graph convolutional network. Physical Review B, 2019, 100, .	3.2	31
11	Lithium Chlorides and Bromides as Promising Solidâ€State Chemistries for Fast Ion Conductors with Good Electrochemical Stability. Angewandte Chemie, 2019, 131, 8123-8127.	2.0	27
12	Graphdiyne as an ideal monolayer coating material for lithium-ion battery cathodes with ultralow areal density and ultrafast Li penetration. Journal of Materials Chemistry A, 2018, 6, 12630-12636.	10.3	24
13	Classifying superheavy elements by machine learning. Physical Review A, 2019, 99, .	2.5	12
14	Screening and Understanding Li Adsorption on Two-Dimensional Metallic Materials by Learning Physics and Physics-Simplified Learning. Jacs Au, 2021, 1, 1904-1914.	7.9	12
15	Discovery of a high-pressure phase of rutile-like $CoO < sub > 2 < / sub >$ and its potential as a cathode material. Journal of Materials Chemistry A, 2018, 6, 18449-18457.	10.3	9
16	Electronic band structure phase diagram of 3D carbon allotropes from machine learning. Diamond and Related Materials, 2020, 108, 107990.	3.9	7
17	2D carbon sheets with negative Gaussian curvature assembled from pentagonal carbon nanoflakes. Physical Chemistry Chemical Physics, 2018, 20, 9123-9129.	2.8	6
18	A high-pressure induced stable phase of Li ₂ MnSiO ₄ as an effective poly-anion cathode material from simulations. Journal of Materials Chemistry A, 2019, 7, 16406-16413.	10.3	6

SHENG GONG

#	Article	IF	CITATIONS
19	Identifying key parameters for predicting materials with low defect generation efficiency by machine learning. Computational Materials Science, 2021, 191, 110306.	3.0	2