
Yumin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5964434/publications.pdf Version: 2024-02-01

YUMIN ZHANC

#	Article	IF	CITATIONS
1	Single-atom Cu anchored catalysts for photocatalytic renewable H2 production with a quantum efficiency of 56%. Nature Communications, 2022, 13, 58.	5.8	175
2	Covalent organic framework-supported Fe–TiO ₂ nanoparticles as ambient-light-active photocatalysts. Journal of Materials Chemistry A, 2019, 7, 16364-16371.	5.2	103
3	Platinum-Supported Cerium-Doped Indium Oxide for Highly Sensitive Triethylamine Gas Sensing with Good Antihumidity. ACS Applied Materials & Interfaces, 2020, 12, 42962-42970.	4.0	78
4	Synergistic Effect of the Surface Vacancy Defects for Promoting Photocatalytic Stability and Activity of ZnS Nanoparticles. ACS Catalysis, 2021, 11, 13255-13265.	5.5	71
5	Facile lotus-leaf-templated synthesis and enhanced xylene gas sensing properties of Ag-LaFeO ₃ nanoparticles. Journal of Materials Chemistry C, 2018, 6, 6138-6145.	2.7	70
6	Formaldehyde sensing performance of reduced graphene oxide-wrapped hollow SnO2 nanospheres composites. Sensors and Actuators B: Chemical, 2020, 307, 127584.	4.0	57
7	Boron-doped graphene quantum dot/Ag–LaFeO ₃ p–p heterojunctions for sensitive and selective benzene detection. Journal of Materials Chemistry A, 2018, 6, 12647-12653.	5.2	51
8	A gas sensor array for the simultaneous detection of multiple VOCs. Scientific Reports, 2017, 7, 1960.	1.6	46
9	Highly selective and sensitive methanol gas sensor based on molecular imprinted silver-doped LaFeO ₃ core–shell and cage structures. Nanotechnology, 2018, 29, 145503.	1.3	42
10	B, N, S, Cl doped graphene quantum dots and their effects on gas-sensing properties of Ag-LaFeO3. Sensors and Actuators B: Chemical, 2018, 266, 364-374.	4.0	41
11	A highly sensitive and selective formaldehyde gas sensor using a molecular imprinting technique based on Ag–LaFeO ₃ . Journal of Materials Chemistry C, 2014, 2, 10067-10072.	2.7	39
12	Band Alignment Strategy for Printable Triple Mesoscopic Perovskite Solar Cells with Enhanced Photovoltage. ACS Applied Energy Materials, 2019, 2, 2034-2042.	2.5	38
13	Rich oxygen vacancies, mesoporous TiO ₂ derived from MIL-125 for highly efficient photocatalytic hydrogen evolution. Chemical Communications, 2021, 57, 9704-9707.	2.2	36
14	Gas Sensors Based on Molecular Imprinting Technology. Sensors, 2017, 17, 1567.	2.1	35
15	Ag Nanoparticles Sensitized In2O3 Nanograin for the Ultrasensitive HCHO Detection at Room Temperature. Nanoscale Research Letters, 2019, 14, 365.	3.1	34
16	Interface Engineering Based on Liquid Metal for Compact-Layer-free, Fully Printable Mesoscopic Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 15616-15623.	4.0	31
17	A high selective methanol gas sensor based on molecular imprinted Ag-LaFeO3 fibers. Scientific Reports, 2017, 7, 12110.	1.6	30
18	Ag-LaFeO3/NCQDs p-n heterojunctions for superior methanol gas sensing performance. Materials Research Bulletin, 2019, 115, 55-64.	2.7	30

YUMIN ZHANG

#	Article	IF	CITATIONS
19	Excellent toluene gas sensing properties of molecular imprinted Ag-LaFeO3 nanostructures synthesized by microwave-assisted process. Materials Research Bulletin, 2019, 111, 320-328.	2.7	30
20	Formaldehyde gas sensor with extremely high response employing cobalt-doped SnO ₂ ultrafine nanoparticles. Nanoscale Advances, 2022, 4, 824-836.	2.2	27
21	Ag–LaFeO ₃ fibers, spheres, and cages for ultrasensitive detection of formaldehyde at low operating temperatures. Physical Chemistry Chemical Physics, 2017, 19, 6973-6980.	1.3	26
22	Ultrasensitive xylene gas sensor based on flower-like SnO ₂ /Co ₃ O ₄ nanorods composites prepared by facile two-step synthesis method. Nanotechnology, 2020, 31, 255501.	1.3	26
23	Molecular imprinting Ag-LaFeO3 spheres for highly sensitive acetone gas detection. Materials Research Bulletin, 2019, 109, 265-272.	2.7	24
24	Morphology-dependent formaldehyde detection of porous copper oxide hierarchical microspheres at near-room temperature. Microporous and Mesoporous Materials, 2020, 302, 110232.	2.2	22
25	Insights into synergistic effect of Pd single atoms and sub-nanoclusters on TiO2 for enhanced photocatalytic H2 evolution. Chemical Engineering Journal, 2022, 450, 137873.	6.6	21
26	Porous Anatase TiO ₂ Nanocrystal Derived from the Metal–Organic Framework as Electron Transport Material for Carbon-Based Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 6180-6187.	2.5	20
27	Design of ultrasensitive Ag-LaFeO3 methanol gas sensor based on quasi molecular imprinting technology. Scientific Reports, 2018, 8, 14220.	1.6	18
28	Nanoporous Carbon Derived from Green Material by an Ordered Activation Method and Its High Capacitance for Energy Storage. Nanomaterials, 2020, 10, 1058.	1.9	18
29	Microwave-assisted synthesis of porous and hollow <i>α</i> -Fe ₂ O ₃ /LaFeO ₃ nanostructures for acetone gas sensing as well as photocatalytic degradation of methylene blue. Nanotechnology, 2020, 31, 215601.	1.3	17
30	Enhanced performance of an acetone gas sensor based on Ag-LaFeO ₃ molecular imprinted polymers and carbon nanotubes composite. Nanotechnology, 2020, 31, 405701.	1.3	14
31	Methanol Gas-Sensing Properties of SWCNT-MIP Composites. Nanoscale Research Letters, 2016, 11, 522.	3.1	12
32	Carbonâ€Based Printable Perovskite Solar Cells with a Mesoporous TiO ₂ Electron Transporting Layer Derived from Metal–Organic Framework NH ₂ â€MILâ€125. Energy Technology, 2021, 9, 2000957.	1.8	11
33	Type II heterojunction promotes photoinduced effects of TiO ₂ for enhancing photocatalytic performance. Journal of Materials Chemistry C, 2022, 10, 6341-6347.	2.7	11
34	Ag-LaFeO3 nanoparticles using molecular imprinting technique for selective detection of xylene. Materials Research Bulletin, 2018, 107, 271-279.	2.7	10
35	Efficient Bifacial Passivation Enables Printable Mesoscopic Perovskite Solar Cells with Improved Photovoltage and Fill Factor. Solar Rrl, 2020, 4, 2000288.	3.1	10
36	Controllable preparation of copper phthalocyanine single crystal nano column and its chlorine gas sensing properties. AIP Advances, 2016, 6, 095303.	0.6	9

YUMIN ZHANG

#	Article	IF	CITATIONS
37	Hybrid cobalt–manganese oxides prepared by ordered steps with a ternary nanosheet structure and its high performance as a binder-free electrode for energy storage. Nanoscale, 2021, 13, 2573-2584.	2.8	8
38	Highly enhanced photocatalytic hydrogen evolution activity by modifying the surface of TiO ₂ nanoparticles with a high proportion of single Cu atoms. Catalysis Science and Technology, 2022, 12, 3856-3862.	2.1	7
39	In2O3 Hollow porous nanospheres loaded with Ag nanoparticles to achieve wide concentration range triethylamine detection. Materials Research Bulletin, 2022, 153, 111881.	2.7	7
40	Mechanism of the Dimethylammonium Cation in Hybrid Perovskites for Enhanced Performance and Stability of Printable Perovskite Solar Cells. Solar Rrl, 2022, 6, 2100923.	3.1	6
41	Unique and Excellent Paintable Liquid Metal for Fluorescent Displays. ACS Applied Materials & Interfaces, 2022, 14, 23951-23963.	4.0	4
42	Fabrication of low operating temperature acetone sensor based on ag-lafeo <inf>3</inf> nanomaterials. , 2017, , .		0