
Josefa Velasco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5964117/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Contrasting effects of natural and anthropogenic stressors on beta diversity in river organisms. Global Ecology and Biogeography, 2013, 22, 796-805.	5.8	142
2	Are Water Beetles Good Indicators of Biodiversity in Mediterranean Aquatic Ecosystems? The Case of the Segura River Basin (SE Spain). Biodiversity and Conservation, 2006, 15, 4507-4520.	2.6	111
3	Response of biotic communities to salinity changes in a Mediterranean hypersaline stream. Saline Systems, 2006, 2, 12.	2.0	106
4	Effects of salinity changes on aquatic organisms in a multiple stressor context. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180011.	4.0	105
5	Hydrological Classification of Natural Flow Regimes to Support Environmental Flow Assessments in Intensively Regulated Mediterranean Rivers, Segura River Basin (Spain). Environmental Management, 2011, 47, 992-1004.	2.7	102
6	Dispersal ability rather than ecological tolerance drives differences in range size between lentic and lotic water beetles (Coleoptera: Hydrophilidae). Journal of Biogeography, 2012, 39, 984-994.	3.0	94
7	Effects of flow regime alteration on fluvial habitats and riparian quality in a semiarid Mediterranean basin. Ecological Indicators, 2013, 30, 52-64.	6.3	92
8	Are the endemic water beetles of the Iberian Peninsula and the Balearic Islands effectively protected?. Biological Conservation, 2008, 141, 1612-1627.	4.1	75
9	Impacts of environmental filters on functional redundancy in riparian vegetation. Journal of Applied Ecology, 2016, 53, 846-855.	4.0	64
10	Conservation of Freshwater Biodiversity: a Comparison of Different Area Selection Methods. Biodiversity and Conservation, 2005, 14, 3457-3474.	2.6	63
11	Evaluating drivers of vulnerability to climate change: a guide for insect conservation strategies. Global Change Biology, 2012, 18, 2135-2146.	9.5	63
12	Responses of Mediterranean aquatic and riparian communities to human pressures at different spatial scales. Ecological Indicators, 2014, 45, 456-464.	6.3	56
13	Functional responses of aquatic macroinvertebrates to flow regulation are shaped by natural flow intermittence in Mediterranean streams. Freshwater Biology, 2019, 64, 1064-1077.	2.4	51
14	Similarity in the difference: changes in community functional features along natural and anthropogenic stress gradients. Ecology, 2015, 96, 2458-2466.	3.2	39
15	The Comparative Osmoregulatory Ability of Two Water Beetle Genera Whose Species Span the Fresh-Hypersaline Gradient in Inland Waters (Coleoptera: Dytiscidae, Hydrophilidae). PLoS ONE, 2015, 10, e0124299.	2.5	33
16	Tempo and mode of the multiple origins of salinity tolerance in a water beetle lineage. Molecular Ecology, 2014, 23, 360-373.	3.9	32
17	Aquatic insects in a multistress environment: cross-tolerance to salinity and desiccation. Journal of Experimental Biology, 2017, 220, 1277-1286.	1.7	31
18	Biological invasion modifies the coâ€occurrence patterns of insects along a stress gradient. Functional Ecology, 2017, 31, 1957-1968.	3.6	30

JOSEFA VELASCO

#	Article	IF	CITATIONS
19	Functional redundancy as a tool for bioassessment: A test using riparian vegetation. Science of the Total Environment, 2016, 566-567, 1268-1276.	8.0	29
20	Reduced salinities compromise the thermal tolerance of hypersaline specialist diving beetles. Physiological Entomology, 2010, 35, 265-273.	1.5	28
21	Do all roads lead to Rome? Exploring community trajectories in response to anthropogenic salinization and dilution of rivers. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180009.	4.0	23
22	Aquatic insects dealing with dehydration: do desiccation resistance traits differ in species with contrasting habitat preferences?. PeerJ, 2016, 4, e2382.	2.0	22
23	Effects of dilution stress on the functioning of a saline Mediterranean stream. Hydrobiologia, 2009, 619, 119-132.	2.0	20
24	Environmental determinants of woody and herbaceous riparian vegetation patterns in a semi-arid mediterranean basin. Hydrobiologia, 2014, 730, 45-57.	2.0	20
25	What traits underpin the successful establishment and spread of the invasive water bug Trichocorixa verticalis verticalis?. Hydrobiologia, 2016, 768, 273-286.	2.0	20
26	The chicken or the egg? Adaptation to desiccation and salinity tolerance in a lineage of water beetles. Molecular Ecology, 2017, 26, 5614-5628.	3.9	18
27	Evaluating anthropogenic impacts on naturally stressed ecosystems: Revisiting river classifications and biomonitoring metrics along salinity gradients. Science of the Total Environment, 2019, 658, 912-921.	8.0	17
28	Metabolic and reproductive plasticity of core and marginal populations of the eurythermic saline water bug Sigara selecta (Hemiptera: Corixidae) in a climate change context. Journal of Insect Physiology, 2017, 98, 59-66.	2.0	16
29	Lethal and sublethal behavioural responses of saline water beetles to acute heat and osmotic stress. Ecological Entomology, 2012, 37, 508-520.	2.2	14
30	Insect communities in saline waters consist of realized but not fundamental niche specialists. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 374, .	4.0	13
31	Cuticle hydrocarbons in saline aquatic beetles. PeerJ, 2017, 5, e3562.	2.0	13
32	Impact of chronic and pulse dilution disturbances on metabolism and trophic structure in a saline Mediterranean stream. Hydrobiologia, 2012, 686, 225-239.	2.0	12
33	Cuticle Hydrocarbons Show Plastic Variation under Desiccation in Saline Aquatic Beetles. Insects, 2021, 12, 285.	2.2	10
34	Role of cuticle hydrocarbons composition in the salinity tolerance of aquatic beetles. Journal of Insect Physiology, 2019, 117, 103899.	2.0	9