
Yaping Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5964042/publications.pdf Version: 2024-02-01

YADING WANG

#	Article	IF	CITATIONS
1	Nitrogen-Doped Yolk–Shell-Structured CoSe/C Dodecahedra for High-Performance Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 3624-3633.	4.0	244
2	High-rate performance electrospun Na0.44MnO2 nanofibers as cathode material for sodium-ion batteries. Journal of Power Sources, 2016, 310, 102-108.	4.0	95
3	Rational design of multi-shelled CoO/Co ₉ S ₈ hollow microspheres for high-performance hybrid supercapacitors. Journal of Materials Chemistry A, 2017, 5, 18448-18456.	5.2	91
4	Heterogeneous NiS/NiO multi-shelled hollow microspheres with enhanced electrochemical performances for hybrid-type asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 9153-9160.	5.2	90
5	Hydrothermal synthesis of coherent porous V2O3/carbon nanocomposites for high-performance lithium- and sodium-ion batteries. Science China Materials, 2017, 60, 717-727.	3.5	58
6	Dodecahedron-Shaped Porous Vanadium Oxide and Carbon Composite for High-Rate Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 17303-17311.	4.0	43
7	Electrospun Single Crystalline Fork-Like K2V8O21 as High-Performance Cathode Materials for Lithium-Ion Batteries. Frontiers in Chemistry, 2018, 6, 195.	1.8	34
8	Self-templating synthesis of double-wall shelled vanadium oxide hollow microspheres for high-performance lithium ion batteries. Journal of Materials Chemistry A, 2018, 6, 6792-6799.	5.2	30
9	Towards a durable high performance anode material for lithium storage: stabilizing N-doped carbon encapsulated FeS nanosheets with amorphous TiO ₂ . Journal of Materials Chemistry A, 2019, 7, 16541-16552.	5.2	30
10	Substrate clamping effect onto magnetoelectric coupling in multiferroic BaTiO ₃ -CoFe ₂ O ₄ core-shell nanofibers via coaxial electrospinning. Europhysics Letters, 2015, 112, 27002.	0.7	25
11	Multi-shelled α-Fe2O3 microspheres for high-rate supercapacitors. Science China Materials, 2016, 59, 247-253.	3.5	25
12	<i>In situ</i> formation of porous graphitic carbon wrapped MnO/Ni microsphere networks as binder-free anodes for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 12316-12322.	5.2	23
13	A Facile Carbon Quantum Dotâ€Modified Reduction Approach Towards Tunable Sb@CQDs Nanoparticles for High Performance Sodium Storage. Batteries and Supercaps, 2020, 3, 463-469.	2.4	20
14	Controllable Preparation of V2O5/Graphene Nanocomposites as Cathode Materials for Lithium-Ion Batteries. Nanoscale Research Letters, 2016, 11, 549.	3.1	17
15	Template-free synthesis of β-Na _{0.33} V ₂ O ₅ microspheres as cathode materials for lithium-ion batteries. CrystEngComm, 2015, 17, 4774-4780.	1.3	16
16	Significant increase of Curie temperature and large piezoelectric coefficient in Ba(Ti0.80Zr0.20)O3-0.5(Ba0.70Ca0.30)TiO3 nanofibers. Applied Physics Letters, 2015, 107, .	1.5	16
17	Variations of local piezoelectricity in multiferroic CoFe2O4–Pb(Zr0.3,Ti0.7)O3 composite nanofibers. Materials Letters, 2015, 157, 311-314.	1.3	7
18	Preparation and Properties of a Flexible Al2O3/Al/Al2O3 Composite. Advances in Materials Science and Engineering, 2018, 2018, 1-5.	1.0	5

#	Article	IF	CITATIONS
19	Naâ€lon Batteries: A Confined Replacement Synthesis of Bismuth Nanodots in MOF Derived Carbon Arrays as Binderâ€Free Anodes for Sodiumâ€lon Batteries (Adv. Sci. 16/2019). Advanced Science, 2019, 6, 1970098.	5.6	4