Nicola Fohrer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5963900/publications.pdf

Version: 2024-02-01

187 papers 7,352 citations

71102 41 h-index 69250 77 g-index

201 all docs

201 docs citations

times ranked

201

6774 citing authors

#	Article	IF	Citations
1	SWAT2000: current capabilities and research opportunities in applied watershed modelling. Hydrological Processes, 2005, 19, 563-572.	2.6	1,089
2	Comparison of two different approaches of sensitivity analysis. Physics and Chemistry of the Earth, 2002, 27, 645-654.	2.9	418
3	Rural–urban gradient analysis of ecosystem services supply and demand dynamics. Land Use Policy, 2012, 29, 521-535.	5 . 6	379
4	Hydrologic Response to land use changes on the catchment scale. Physics and Chemistry of the Earth, 2001, 26, 577-582.	0.3	305
5	Assessment of the effects of land use patterns on hydrologic landscape functions: development of sustainable land use concepts for low mountain range areas. Hydrological Processes, 2005, 19, 659-672.	2.6	152
6	The impact of agricultural Best Management Practices on water quality in a North German lowland catchment. Environmental Monitoring and Assessment, 2011, 183, 351-379.	2.7	136
7	Smart low flow signature metrics for an improved overall performance evaluation of hydrological models. Journal of Hydrology, 2014, 510, 447-458.	5 . 4	134
8	Assessing the Impacts of Four Land Use Types on the Water Quality of Wetlands in Japan. Water Resources Management, 2013, 27, 2217-2229.	3.9	131
9	Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan, Iran. Science of the Total Environment, 2020, 712, 136449.	8.0	128
10	Long-term land use changes in a mesoscale watershed due to socio-economic factors — effects on landscape structures and functions. Ecological Modelling, 2001, 140, 125-140.	2.5	122
11	Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using the SWAT model. Agricultural Water Management, 2010, 97, 317-325.	5 . 6	118
12	How to improve the representation of hydrological processes in SWAT for a lowland catchment – temporal analysis of parameter sensitivity and model performance. Hydrological Processes, 2014, 28, 2651-2670.	2.6	112
13	Changing soil and surface conditions during rainfall. Catena, 1999, 37, 355-375.	5.0	111
14	Streamflow Trends and Climate Variability Impacts in Poyang Lake Basin, China. Water Resources Management, 2010, 24, 689-706.	3.9	99
15	Development and testing of a phytoplankton index of biotic integrity (P-IBI) for a German lowland river. Ecological Indicators, 2012, 13, 158-167.	6. 3	89
16	Distribution of phytoplankton in a German lowland river in relation to environmental factors. Journal of Plankton Research, 2011, 33, 807-820.	1.8	83
17	SWAT-G, a version of SWAT99.2 modified for application to low mountain range catchments. Physics and Chemistry of the Earth, 2002, 27, 641-644.	2.9	81
18	Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates. Science of the Total Environment, 2015, 533, 542-556.	8.0	77

#	Article	IF	Citations
19	A multiâ€storage groundwater concept for the SWAT model to emphasize nonlinear groundwater dynamics in lowland catchments. Hydrological Processes, 2014, 28, 5599-5612.	2.6	7 5
20	Automatic model calibration. Hydrological Processes, 2005, 19, 651-658.	2.6	72
21	Incorporating landscape depressions and tile drainages of a northern German lowland catchment into a semiâ€distributed model. Hydrological Processes, 2010, 24, 1472-1486.	2.6	71
22	Integrating catchment properties in small scale species distribution models of stream macroinvertebrates. Ecological Modelling, 2014, 277, 77-86.	2.5	70
23	Implementing river water quality modelling issues in mesoscale watershed models for water policy demands $\hat{a} \in \hat{a} \in \hat{a}$ and chemistry of the Earth, 2004, 29, 725-737.	2.9	68
24	An attack on two fronts: predicting how changes in land use and climate affect the distribution of stream macroinvertebrates. Freshwater Biology, 2015, 60, 1443-1458.	2.4	66
25	Assessing the impacts of Best Management Practices on nitrate pollution in an agricultural dominated lowland catchment considering environmental protection versus economic development. Journal of Environmental Management, 2017, 196, 347-364.	7.8	66
26	An interdisciplinary modelling approach to evaluate the effects of land use change. Physics and Chemistry of the Earth, 2002, 27, 655-662.	2.9	62
27	Spatial patterns and temporal variability of dryness/wetness in the Yangtze River Basin, China. Quaternary International, 2012, 282, 5-13.	1.5	62
28	Development and evaluation of a diatom-based index of biotic integrity (D-IBI) for rivers impacted by run-of-river dams. Ecological Indicators, 2012, 18, 108-117.	6.3	59
29	Comparing the effects of dynamic versus static representations of land use change in hydrologic impact assessments. Environmental Modelling and Software, 2019, 122, 103987.	4.5	57
30	Effects of land cover, topography, and soil on stream water quality at multiple spatial and seasonal scales in a German lowland catchment. Ecological Indicators, 2021, 120, 106940.	6.3	57
31	Simulation of Streamflow and Sediment with the Soil and Water Assessment Tool in a Data Scarce Catchment in the Three Gorges Region, China. Journal of Environmental Quality, 2014, 43, 37-45.	2.0	56
32	Water-related ecosystem services in Western Siberian lowland basinsâ€"Analysing and mapping spatial and seasonal effects on regulating services based on ecohydrological modelling results. Ecological Indicators, 2016, 71, 55-65.	6.3	56
33	Assessment of the effect of land use patterns on hydrologic landscape functions: a comprehensive GIS-based tool to minimize model uncertainty resulting from spatial aggregation. Hydrological Processes, 2005, 19, 715-727.	2.6	55
34	Assessment of the Environmental Fate of the Herbicides Flufenacet and Metazachlor with the SWAT Model. Journal of Environmental Quality, 2014, 43, 75-85.	2.0	54
35	The impact of land use change in the Xiangxi Catchment (China) on water balance and sediment transport. Regional Environmental Change, 2015, 15, 485-498.	2.9	53
36	Modelling of riverine ecosystems by integrating models: conceptual approach, a case study and research agenda. Journal of Biogeography, 2012, 39, 2253-2263.	3.0	52

#	Article	IF	CITATIONS
37	Dynamic Modelling of Land Use Change Impacts on Nitrate Loads in Rivers. Environmental Processes, 2015, 2, 575-592.	3.5	52
38	Evaluation of Land Use, Land Management and Soil Conservation Strategies to Reduce Non-Point Source Pollution Loads in the Three Gorges Region, China. Environmental Management, 2016, 58, 906-921.	2.7	52
39	Modelling hydrological processes in mesoscale lowland river basins with SWAT—capabilities and challenges. Hydrological Sciences Journal, 2008, 53, 989-1000.	2.6	46
40	Combining multivariate statistical techniques and random forests model to assess and diagnose the trophic status of Poyang Lake in China. Ecological Indicators, 2017, 83, 74-83.	6.3	45
41	Assessing the spatial and temporal variations of water quality in lowland areas, Northern Germany. Journal of Hydrology, 2012, 438-439, 137-147.	5.4	44
42	On characterizing the temporal dominance patterns of model parameters and processes. Hydrological Processes, 2016, 30, 2255-2270.	2.6	43
43	Comparing model sensitivities of different landscapes using the ecohydrological SWAT model. Advances in Geosciences, 0, 21, 91-98.	12.0	43
44	Impacts of cascade run-of-river dams on benthic diatoms in the Xiangxi River, China. Aquatic Sciences, 2010, 72, 117-125.	1.5	42
45	Process verification of a hydrological model using a temporal parameter sensitivity analysis. Hydrology and Earth System Sciences, 2015, 19, 4365-4376.	4.9	42
46	Effects of land use changes on the nutrient balance in mesoscale catchments. Physics and Chemistry of the Earth, 2003, 28, 1301-1309.	2.9	41
47	The evaluation of land-use options in mesoscale catchments. Ecological Modelling, 2005, 187, 3-14.	2.5	40
48	Hydrological and environmental variables outperform spatial factors in structuring species, trait composition, and beta diversity of pelagic algae. Ecology and Evolution, 2018, 8, 2947-2961.	1.9	40
49	Riverine phytoplankton shifting along a lentic-lotic continuum under hydrological, physiochemical conditions and species dispersal. Science of the Total Environment, 2018, 619-620, 1628-1636.	8.0	40
50	How to Constrain Multiâ€Objective Calibrations of the SWAT Model Using Water Balance Components. Journal of the American Water Resources Association, 2017, 53, 532-546.	2.4	39
51	Climate change impacts on ecologically relevant hydrological indicators in three catchments in three European ecoregions. Ecological Engineering, 2019, 127, 404-416.	3.6	39
52	Modeling daily chlorophyll a dynamics in a German lowland river using artificial neural networks and multiple linear regression approaches. Limnology, 2014, 15, 47-56.	1.5	38
53	Modelling of nitrogen leaching under a complex winter wheat and red clover crop rotation in a drained agricultural field. Physics and Chemistry of the Earth, 2009, 34, 530-540.	2.9	37
54	Effects of DEM horizontal resolution and methods on calculating the slope length factor in gently rolling landscapes. Catena, 2011, 87, 368-375.	5.0	37

#	Article	IF	CITATIONS
55	Epiphytic biofilms in freshwater and interactions with macrophytes: Current understanding and future directions. Aquatic Botany, 2022, 176, 103467.	1.6	36
56	Considering spatial distribution and deposition of sediment in lumped and semi-distributed models. Hydrological Processes, 2005, 19, 785-794.	2.6	35
57	A joined multi-metric calibration of river discharge and nitrate loads with different performance measures. Journal of Hydrology, 2016, 536, 534-545.	5.4	34
58	Riverine phytoplankton functional groups response to multiple stressors variously depending on hydrological periods. Ecological Indicators, 2019, 101, 41-49.	6.3	32
59	Influences of pesticides, nutrients, and local environmental variables on phytoplankton communities in lentic small water bodies in a German lowland agricultural area. Science of the Total Environment, 2021, 780, 146481.	8.0	32
60	Impacts of land use changes on hydrological components and macroinvertebrate distributions in the Poyang lake area. Ecohydrology, 2015, 8, 1119-1136.	2.4	31
61	Herbicide transport via surface runoff during intermittent artificial rainfall: A laboratory plot scale study. Catena, 2013, 101, 38-49.	5.0	30
62	Application of a Simple Raster-Based Hydrological Model for Streamflow Prediction in a Humid Catchment with Polder Systems. Water Resources Management, 2011, 25, 661-676.	3.9	29
63	Using a simple model as a tool to parameterise the SWAT model of the Xiangxi river in China. Quaternary International, 2009, 208, 116-120.	1.5	28
64	Development and application of a nitrogen simulation model in a data scarce catchment in South China. Agricultural Water Management, 2011, 98, 619-631.	5.6	28
65	Application of a hydrological-hydraulic modelling cascade in lowlands for investigating water and sediment fluxes in catchment, channel and reach. Journal of Hydrology and Hydromechanics, 2013, 61, 334-346.	2.0	28
66	Application of a modeling approach to designate soil and soil organic carbon loss to wind erosion on long-term monitoring sites (BDF) in Northern Germany. Aeolian Research, 2017, 25, 135-147.	2.7	28
67	Modeling the effects of environmental variables on short-term spatial changes in phytoplankton biomass in a large shallow lake, Lake Taihu. Environmental Earth Sciences, 2014, 72, 3609-3621.	2.7	26
68	Demasking the integrated information of discharge: Advancing sensitivity analysis to consider different hydrological components and their rates of change. Water Resources Research, 2016, 52, 8724-8743.	4.2	26
69	Improving hydrological model optimization for riverine species. Ecological Indicators, 2017, 80, 376-385.	6.3	26
70	How weather conditions and physico-chemical properties control the leaching of flufenacet, diflufenican, and pendimethalin in a tile-drained landscape. Agriculture, Ecosystems and Environment, 2019, 278, 107-116.	5.3	25
71	Identifying the connective strength between model parameters and performance criteria. Hydrology and Earth System Sciences, 2017, 21, 5663-5679.	4.9	24
72	Lentic small water bodies: Variability of pesticide transport and transformation patterns. Science of the Total Environment, 2018, 618, 26-38.	8.0	24

#	Article	IF	Citations
73	Training hydrologists to be ecohydrologists and play a leading role in environmental problem solving. Hydrology and Earth System Sciences, 2012, 16, 1685-1696.	4.9	23
74	Climate change impacts on the water and groundwater resources of the Lake Tana Basin, Ethiopia. Journal of Water and Climate Change, 2021, 12, 1544-1563.	2.9	22
75	Advances and visions in large-scale hydrological modelling: findings from the 11th Workshop on Large-Scale Hydrological Modelling. Advances in Geosciences, 0, 18, 51-61.	12.0	22
76	Environment regimes play an important role in structuring trait―and taxonomyâ€based temporal beta diversity of riverine diatoms. Journal of Ecology, 2022, 110, 1442-1454.	4.0	22
77	Detection of dominant nitrate processes in ecohydrological modeling with temporal parameter sensitivity analysis. Ecological Modelling, 2015, 314, 62-72.	2.5	21
78	Field insights into leaching and transformation of pesticides and fluorescent tracers in agricultural soil. Science of the Total Environment, 2021, 751, 141658.	8.0	21
79	Interdisciplinary modeling and the significance of soil functions. Journal of Plant Nutrition and Soil Science, 2002, 165, 460.	1.9	20
80	Spatial and temporal characteristics of wet spells in the Yangtze River Basin from 1961 to 2003. Theoretical and Applied Climatology, 2009, 98, 107-117.	2.8	20
81	A Modelling Framework to Assess the Effect of Pressures on River Abiotic Habitat Conditions and Biota. PLoS ONE, 2015, 10, e0130228.	2.5	19
82	Importance of sampling frequency when collecting diatoms. Scientific Reports, 2016, 6, 36950.	3.3	19
83	Assessment of nutrient entry pathways and dominating hydrological processes in lowland catchments. Advances in Geosciences, 0, 11, 107-112.	12.0	19
84	Comparison of a simple and a spatially distributed hydrologic model for the simulation of a lowland catchment in Northern Germany. Ecological Modelling, 2007, 209, 21-28.	2.5	18
85	Impact of organic farming systems on runoff formation processes—A long-term sequential rainfall experiment. Soil and Tillage Research, 2009, 102, 45-54.	5.6	18
86	Modeling the impact of agricultural crops on the spatial and seasonal variability of water balance components in the Lake Tana basin, Ethiopia. Hydrology Research, 2019, 50, 1376-1396.	2.7	18
87	Gaining prediction accuracy in land use modeling by integrating modeled hydrologic variables. Environmental Modelling and Software, 2019, 115, 155-163.	4.5	18
88	Modeling the impact of climate change on streamflow and major hydrological components of an Iranian Wadi system. Journal of Water and Climate Change, 2021, 12, 1598-1613.	2.9	18
89	SEPAL $\hat{a}\in$ a simple GIS-based tool to estimate sediment pathways in lowland catchments. Advances in Geosciences, 0, 21, 25-32.	12.0	18
90	Assessment of Uncertainties in Modelling Land Use Change with an Integrated Cellular Automata–Markov Chain Model. Environmental Modeling and Assessment, 2022, 27, 275-293.	2.2	18

#	Article	IF	CITATIONS
91	Suitability of S factor algorithms for soil loss estimation at gently sloped landscapes. Catena, 2009, 77, 248-255.	5.0	17
92	Temporal impacts of a small hydropower plant on benthic algal community. Fundamental and Applied Limnology, 2010, 177, 257-266.	0.7	16
93	Simulation and comparison of stream power in-channel and on the floodplain in a German lowland area. Journal of Hydrology and Hydromechanics, 2014, 62, 133-144.	2.0	16
94	Detailed spatial analysis of SWAT-simulated surface runoff and sediment yield in a mountainous watershed in China. Hydrological Sciences Journal, 0, , 1-17.	2.6	16
95	Examining lag time using the landscape, pedoscape and lithoscape metrics of catchments. Ecological Indicators, 2019, 105, 36-46.	6.3	16
96	Streamflow-based evaluation of climate model sub-selection methods. Climatic Change, 2020, 163, 1267-1285.	3.6	16
97	Twenty years of change: Land and water resources in the Chindwin catchment, Myanmar between 1999 and 2019. Science of the Total Environment, 2021, 798, 148766.	8.0	16
98	Multiple pesticides in lentic small water bodies: Exposure, ecotoxicological risk, and contamination origin. Science of the Total Environment, 2022, 816, 151504.	8.0	16
99	Linkage Between In-Stream Total Phosphorus and Land Cover in Chugoku District, Japan: An Ann Approach. Journal of Hydrology and Hydromechanics, 2012, 60, 33-44.	2.0	15
100	Reactive ditches: A simple approach to implement denitrifying wood chip bioreactors to reduce nitrate exports into aquatic ecosystems?. Environmental Earth Sciences, 2016, 75, 1.	2.7	15
101	Field data-based implementation of land management and terraces on the catchment scale for an eco-hydrological modelling approach in the Three Gorges Region, China. Agricultural Water Management, 2016, 175, 43-60.	5.6	15
102	Seasonality of Roughness - the Indicator of Annual River Flow Resistance Condition in a Lowland Catchment. Water Resources Management, 2017, 31, 3299-3312.	3.9	15
103	Analysing spatio-temporal process and parameter dynamics in models to characterise contrasting catchments. Journal of Hydrology, 2019, 570, 863-874.	5. 4	15
104	Modeling the spatio-temporal flow dynamics of groundwater-surface water interactions of the Lake Tana Basin, Upper Blue Nile, Ethiopia. Hydrology Research, 2020, 51, 1537-1559.	2.7	15
105	Assessing parameter identifiability for multiple performance criteria to constrain model parameters. Hydrological Sciences Journal, 2020, 65, 1158-1172.	2.6	15
106	A Comparison of Three Approaches to Predict Phytoplankton Biomass in Gonghu Bay of Lake Taihu. Journal of Environmental Informatics, 2014, 24, 39-51.	6.0	15
107	Representation of hydrological processes in a rural lowland catchment in Northern Germany using <scp>SWAT </scp> +. Hydrological Processes, 2022, 36, .	2.6	15
108	Two-dimensional numerical assessment of the hydrodynamics of the Nile swamps in southern Sudan. Hydrological Sciences Journal, 2010, 55, 17-26.	2.6	14

#	Article	IF	Citations
109	Natural and Anthropogenic Causes of Vegetation Changes in Riparian Wetlands Along the Lower Reaches of the Yellow River, China. Wetlands, 2015, 35, 391-399.	1.5	14
110	Effects of hydrological variables on structuring morphological trait (cell size) of diatom community in a lowland river. Ecological Indicators, 2018, 94, 207-217.	6.3	14
111	Statistical analysis of rainfall and streamflow time series in the Lake Tana Basin, Ethiopia. Journal of Water and Climate Change, 2020, 11 , 258-273.	2.9	14
112	Structural uncertainty assessment in a discharge simulation model. Hydrological Sciences Journal, 2011, 56, 854-869.	2.6	13
113	Regionalization of Tank Model Using Landscape Metrics of Catchments. Water Resources Management, 2016, 30, 5065-5085.	3.9	13
114	A method to assess instream water quality $\hat{a} \in \text{``the role of nitrogen entries in a North German rural lowland catchment. Advances in Geosciences, 0, 18, 37-41.}$	12.0	13
115	Effects of the herbicides metazachlor and flufenacet on phytoplankton communities – A microcosm assay. Ecotoxicology and Environmental Safety, 2021, 228, 113036.	6.0	13
116	Influences of land use changes on the dynamics of water quantity and quality in the German lowland catchment of the Stör. Hydrology and Earth System Sciences, 2022, 26, 2561-2582.	4.9	13
117	Morphological analysis of the Sudd region using land survey and remote sensing data. Earth Surface Processes and Landforms, 2008, 33, 1709-1720.	2.5	12
118	Flooding and drying mechanisms of the seasonal Sudd flood plains along the Bahr el Jebel in southern Sudan. Hydrological Sciences Journal, 2010, 55, 4-16.	2.6	12
119	A new model linking macroinvertebrate assemblages to habitat composition in rivers: development, sensitivity and univariate application. Fundamental and Applied Limnology, 2015, 186, 117-133.	0.7	12
120	Assessment of geo-hazards in a rapidly changing landscape: the three Gorges Reservoir Region in China. Environmental Earth Sciences, 2015, 74, 4939-4960.	2.7	12
121	Identifying the most important spatially distributed variables for explaining land use patterns in a rural lowland catchment in Germany. Journal of Chinese Geography, 2019, 29, 1788-1806.	3.9	12
122	Omnipresent distribution of herbicides and their transformation products in all water body types of an agricultural landscape in the North German Lowland. Environmental Science and Pollution Research, 2021, 28, 44183-44199.	5.3	12
123	Application of the Bayesian calibration methodology for the parameter estimation in CoupModel. Advances in Geosciences, 0, 21, 13-24.	12.0	12
124	Variability of water quality in a riparian wetland with interacting shallow groundwater and surface water. Journal of Plant Nutrition and Soil Science, 2009, 172, 757-768.	1.9	11
125	A comparison of phytoplankton assemblages generated by two sampling protocols in a German lowland catchment. Annales De Limnologie, 2011, 47, 313-323.	0.6	11
126	Effects of land-use pattern and physiochemical conditions on phytoplankton communities in a German lowland catchment. Fundamental and Applied Limnology, 2018, 191, 175-187.	0.7	11

#	Article	IF	Citations
127	Impacts of spatial data resolution on simulated discharge, a case study of Xitiaoxi catchment in South China. Advances in Geosciences, 0, 21, 131-137.	12.0	11
128	Ecohydrological modelling of water discharge and nitrate loads in a mesoscale lowland catchment, Germany. Advances in Geosciences, 0, 21, 49-55.	12.0	11
129	Accuracy, reproducibility and sensitivity of acoustic Doppler technology for velocity and discharge measurements in medium-sized rivers. Hydrological Sciences Journal, 2012, 57, 1626-1641.	2.6	10
130	Structural Characteristics and Driving Factors of the Planktonic Eukaryotic Community in the Danjiangkou Reservoir, China. Water (Switzerland), 2020, 12, 3499.	2.7	10
131	A test of CoupModel for assessing the nitrogen leaching in grassland systems with two different fertilization levels. Journal of Plant Nutrition and Soil Science, 2009, 172, 745-756.	1.9	9
132	Using residual analysis, auto- and cross-correlations to identify key processes for the calibration of the SWAT model in a data scarce region. Advances in Geosciences, 0, 31, 23-30.	12.0	9
133	Simulation, quantification and comparison of in-channel and floodplain sediment processes in a lowland area $\hat{a} \in \text{``A case study of the Upper St} \hat{A}_{\text{r}}$ catchment in northern Germany. Ecological Indicators, 2015, 57, 118-127.	6.3	9
134	Regionalizing Flood Magnitudes using Landscape Structural Patterns of Catchments. Water Resources Management, 2018, 32, 2385-2403.	3.9	9
135	Simple regression models can act as calibration-substitute to approximate transient storage parameters in streams. Advances in Water Resources, 2019, 123, 201-209.	3.8	9
136	Curved filaments of Aulacoseira complex as ecological indicators in the Pearl River, China. Ecological Indicators, 2020, 118, 106722.	6.3	9
137	OberflÄ e henverschlammung und Abflußbildung auf Böden aus Löß und pleistozäen Sedimenten. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1995, 158, 43-53.	0.4	8
138	Parameter calibration and uncertainty estimation of a simple rainfall-runoff model in two case studies. Journal of Hydroinformatics, 2012, 14, 1061-1074.	2.4	8
139	Contribution of microspatial factors to benthic diatom communities. Hydrobiologia, 2014, 732, 49-60.	2.0	8
140	Long-term monitoring of soil quality changes in Northern Germany. Geoderma Regional, 2016, 7, 239-249.	2.1	8
141	Hydrological tracers, the herbicide metazachlor and its transformation products in a retention pond during transient flow conditions. Environmental Science and Pollution Research, 2019, 26, 26706-26720.	5.3	8
142	Analysis of the occurrence, robustness and characteristics of abrupt changes in streamflow time series under future climate change. Climate Risk Management, 2019, 26, 100198.	3.2	8
143	Integrating water use systems and soil and water conservation measures into a hydrological model of an Iranian Wadi system. Journal of Arid Land, 2020, 12, 545-560.	2.3	8
144	Spatially distributed impacts of climate change and groundwater demand on the water resources in a wadi system. Hydrology and Earth System Sciences, 2021, 25, 5065-5081.	4.9	8

#	Article	IF	Citations
145	Spatio-temporal water body and vegetation changes in the Nile swamps of southern Sudan. Advances in Geosciences, 0, 11, 113-116.	12.0	8
146	Modelling spatial distribution of surface runoff and sediment yield in a Chinese river basin without continuous sediment monitoring. Hydrological Sciences Journal, 0, , 1-24.	2.6	7
147	When is a hydrological model sufficiently calibrated to depict flow preferences of riverine species?. Ecohydrology, 2020, 13, e2193.	2.4	7
148	An improved process-based representation of stream solute transport in the soil and water assessment tools. Hydrological Processes, 2020, 34, 2599-2611.	2.6	7
149	Using integrated models to analyze and predict the variance of diatom community composition in an agricultural area. Science of the Total Environment, 2022, 803, 149894.	8.0	7
150	The Basic Ideas of the Ecosystem Service Concept. , 2015, , 7-33.		7
151	Recent developments in river basin research and management. Physics and Chemistry of the Earth, 2003, 28, 1279.	2.9	6
152	Best management practices to reduce nitrate pollution in a rural watershed in Germany. Revista Ambiente & $\tilde{A}gua$, 2017, 12, 888.	0.3	6
153	Projected changes in climate and hydrological regimes of the Western Siberian lowlands. Environmental Earth Sciences, 2019, 78, 1.	2.7	6
154	Intensive long-term monitoring of soil organic carbon and nutrients in Northern Germany. Nutrient Cycling in Agroecosystems, 2020, 116, 57-69.	2.2	6
155	Developing an improved user interface for a physically-based stream solute transport model. Environmental Modelling and Software, 2020, 129, 104715.	4.5	6
156	Estimation of ungauged Bahr el Jebel flows based on upstream water levels and large scale spatial rainfall data. Advances in Geosciences, 0, 18, 9-13.	12.0	6
157	Quantification of soil properties based on external information by means of fuzzy-set theory. Journal of Plant Nutrition and Soil Science, 2002, 165, 511.	1.9	5
158	Application of modified Manning formula in the determination of vertical profile velocity in natural rivers. Hydrology Research, 2017, 48, 133-146.	2.7	5
159	PondR: a process-oriented model to simulate the hydrology of drainage ponds. Journal of Hydroinformatics, 2018, 20, 149-163.	2.4	5
160	Diatoms as an indicator for tile drainage flow in a German lowland catchment. Environmental Sciences Europe, 2018, 30, 4.	5.5	5
161	Regionalizing time of concentration using landscape structural patterns of catchments. Journal of Hydrology and Hydromechanics, 2019, 67, 135-142.	2.0	5
162	An investigation of the effects of model structure on model performance to reduce discharge simulation uncertainty in two catchments. Advances in Geosciences, 0, 18, 31-35.	12.0	5

#	Article	IF	CITATIONS
163	Estimating the impacts and uncertainty of changing spatial input data resolutions on streamflow simulations in two basins. Journal of Hydroinformatics, 2012, 14, 902-917.	2.4	4
164	Modelling the relationship between catchment attributes and wetland water quality in Japan. Ecohydrology, 2015, 8, 726-737.	2.4	4
165	Length-weight relationships of two fish species from the Jialing River, the largest tributary of the upper Yangtze River, China. Journal of Applied Ichthyology, 2018, 34, 1373-1375.	0.7	4
166	Towards an improved understanding of hydrological change $\hat{a} \in \text{``linking hydrologic metrics and multiple change point tests. Journal of Water and Climate Change, 2019, 10, 743-758.}$	2.9	4
167	Interaction of River Basins and Coastal Waters – An Integrated Ecohydrological View. , 2011, , 109-150.		3
168	Simulating impacts of silage maize (Zea mays) in monoculture and undersown with annual grass () Tj ETQq0 0 (Water Management, 2016, 178, 52-65.	0 rgBT /Ov 5.6	erlock 10 Tf . 3
169	Regionalization of flood magnitudes using the ecological attributes of watersheds. Geocarto International, 2020, 35, 917-933.	3.5	3
170	Hydrologic comparison between a lowland catchment (Kielstau, Germany) and a mountainous catchment (XitaoXi, China) using KIDS model in PCRaster. Advances in Geosciences, 0, 21, 125-130.	12.0	3
171	Epiphyton in Agricultural Streams: Structural Control and Comparison to Epilithon. Water (Switzerland), 2021, 13, 3443.	2.7	3
172	Assessment of anthropogenic impacts on water quality. Physics and Chemistry of the Earth, 2005, 30, 471.	2.9	2
173	Soil structure and herbicide transport on soil surfaces during intermittent artificial rainfall. Zeitschrift FÃ1⁄4r Geomorphologie, 2013, 57, 135-155.	0.8	2
174	Improved structure of vertical flow velocity distribution in natural rivers based on mean vertical profile velocity and relative water depth. Hydrology Research, 2018, 49, 878-892.	2.7	2
175	Improving Information Extraction From Simulated Discharge Using Sensitivityâ€Weighted Performance Criteria. Water Resources Research, 2020, 56, e2019WR025605.	4.2	2
176	Succession and Driving Factors of Periphytic Community in the Middle Route Project of South-to-North Water Division (Henan, China). International Journal of Environmental Research and Public Health, 2022, 19, 4089.	2.6	2
177	Gain and retain - On the efficiency of modified agricultural drainage ponds for pesticide retention. Science of the Total Environment, 2022, 836, 155405.	8.0	2
178	Computer-assisted mapping of the seed bed structure. Journal of Plant Nutrition and Soil Science, 2003, 166, 124-125.	1.9	1
179	Water-Related Ecosystem Services – The Case Study of Regulating Ecosystem Services in the Kielstau Basin, Germany. , 2015, , 215-232.		1
180	Modelling of hydrological processes in snowmelt-governed permafrost-free catchments of the Western Siberian Lowlands. International Journal of Hydrology Science and Technology, 2018, 1, 1.	0.3	1

#	Article	lF	CITATIONS
181	<i>Preface</i> Transdisciplinary concepts and modelling strategies for the assessment of complex environmental systems <i>Proceedings of the 12th Workshop on Large-scale Hydrological Modelling</i> . Advances in Geosciences, 0, 21, 1-1.	12.0	1
182	SRTM DEM levels over papyrus swamp vegetation $\hat{a} \in \hat{a}$ a correction approach. Advances in Geosciences, 0, 21, 81-84.	12.0	1
183	Application of a virtual watershed in academic education. Advances in Geosciences, 0, 5, 137-141.	12.0	1
184	Hydrological modeling in a rural catchment in Germany. Revista Brasileira De Tecnologia Aplicada Nas Ciências Agrárias, 2017, 10, .	0.1	1
185	Temporal variability of nitrogen and phosphorus concentrations in a German catchment: water sampling implication. Revista Brasileira De Engenharia Agricola E Ambiental, 2014, 18, 811-818.	1.1	0
186	Modelling of hydrological processes in snowmelt-governed permafrost-free catchments of the Western Siberian lowlands. International Journal of Hydrology Science and Technology, 2018, 8, 289.	0.3	0
187	Festschrift zum 75. JubilĤm der Agrar- und ErnĤrungswissenschaftlichen FakultĤder Christian-Albrechts-UniversitĤzu Kiel (1946-2021). , 2021, , .		0