
Shabir H Wani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5963784/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop Journal, 2016, 4, 162-176.	5.2	695
2	Transcription Factors and Plants Response to Drought Stress: Current Understanding and Future Directions. Frontiers in Plant Science, 2016, 7, 1029.	3.6	611
3	Engineering Cold Stress Tolerance in Crop Plants. Current Genomics, 2011, 12, 30-43.	1.6	487
4	MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants. Frontiers in Plant Science, 2016, 7, 817.	3.6	299
5	WRKY transcription factors and plant defense responses: latest discoveries and future prospects. Plant Cell Reports, 2021, 40, 1071-1085.	5.6	223
6	Compatible Solute Engineering in Plants for Abiotic Stress Tolerance - Role of Glycine Betaine. Current Genomics, 2013, 14, 157-165.	1.6	218
7	Biotechnology and Drought Tolerance. Journal of Crop Improvement, 2009, 23, 19-54.	1.7	133
8	Engineering salinity tolerance in plants: progress and prospects. Planta, 2020, 251, 76.	3.2	123
9	Salicylic acid enhances nickel stress tolerance by up-regulating antioxidant defense and glyoxalase systems in mustard plants. Ecotoxicology and Environmental Safety, 2019, 180, 575-587.	6.0	105
10	Serratia marcescens BM1 Enhances Cadmium Stress Tolerance and Phytoremediation Potential of Soybean Through Modulation of Osmolytes, Leaf Gas Exchange, Antioxidant Machinery, and Stress-Responsive Genes Expression. Antioxidants, 2020, 9, 43.	5.1	97
11	Engineering plants for heavy metal stress tolerance. Rendiconti Lincei, 2018, 29, 709-723.	2.2	91
12	Abscisic acid: A key regulator of abiotic stress tolerance in plants. Plant Gene, 2017, 11, 106-111.	2.3	88
13	Plant small RNAs: the essential epigenetic regulators of gene expression for salt-stress responses and tolerance. Plant Cell Reports, 2018, 37, 61-75.	5.6	87
14	Epigenetic Control of Plant Cold Responses. Frontiers in Plant Science, 2017, 8, 1643.	3.6	86
15	Polyamines in response to abiotic stress tolerance through transgenic approaches. GM Crops and Food, 2014, 5, 87-96.	3.8	78
16	Insights on Calcium-Dependent Protein Kinases (CPKs) Signaling for Abiotic Stress Tolerance in Plants. International Journal of Molecular Sciences, 2019, 20, 5298.	4.1	78
17	Transcriptional regulation of osmotic stress tolerance in wheat (Triticum aestivum L.). Plant Molecular Biology, 2018, 97, 469-487.	3.9	67
18	Harnessing Genome Editing Techniques to Engineer Disease Resistance in Plants. Frontiers in Plant Science, 2019, 10, 550.	3.6	62

#	Article	IF	CITATIONS
19	Improving rice salt tolerance by precision breeding in a new era. Current Opinion in Plant Biology, 2021, 60, 101996.	7.1	61
20	Next-Generation Breeding Strategies for Climate-Ready Crops. Frontiers in Plant Science, 2021, 12, 620420.	3.6	61
21	Biotechnology and Abiotic Stress Tolerance in Rice. Rice Research Open Access, 2014, 2, .	0.4	53
22	Cisgenics - A Sustainable Approach for Crop Improvement. Current Genomics, 2013, 14, 468-476.	1.6	53
23	Rewilding crops for climate resilience: economic analysis and <i>de novo</i> domestication strategies. Journal of Experimental Botany, 2021, 72, 6123-6139.	4.8	52
24	miRNA applications for engineering abiotic stress tolerance in plants. Biologia (Poland), 2020, 75, 1063-1081.	1.5	43
25	Introduction of Osglyll gene into Oryza sativa for increasing salinity tolerance. Biologia Plantarum, 2011, 55, 536-540.	1.9	42
26	In vitro propagation of bamboo species through axillary shoot proliferation: a review. Plant Cell, Tissue and Organ Culture, 2018, 132, 27-53.	2.3	41
27	Breeding More Crops in Less Time: A Perspective on Speed Breeding. Biology, 2022, 11, 275.	2.8	41
28	SSR and RAPD analysis of genetic diversity in walnut (Juglans regia L.) genotypes from Jammu and Kashmir, India. Physiology and Molecular Biology of Plants, 2012, 18, 149-160.	3.1	38
29	Transgenic approaches to enhance salt and drought tolerance in plants. Plant Gene, 2017, 11, 219-231.	2.3	36
30	Adaptation Strategies and Defence Mechanisms of Plants During Environmental Stress. , 2017, , 359-413.		35
31	QTLian breeding for climate resilience in cereals: progress and prospects. Functional and Integrative Genomics, 2019, 19, 685-701.	3.5	34
32	Biotechnology and Plant Disease Control-Role of RNA Interference. American Journal of Plant Sciences, 2010, 01, 55-68.	0.8	32
33	Plant Plastid Engineering. Current Genomics, 2010, 11, 500-512.	1.6	31
34	Heat Stress-Mediated Constraints in Maize (Zea mays) Production: Challenges and Solutions. Frontiers in Plant Science, 2022, 13, .	3.6	31
35	Reactive Oxygen Species Generation, Scavenging and Signaling in Plant Defense Responses. , 2019, , 111-132.		30
36	Rhizosphere microbiomes can regulate plant drought tolerance. Pedosphere, 2022, 32, 61-74.	4.0	30

#	Article	IF	CITATIONS
37	An efficient and reproducible method for regeneration of whole plants from mature seeds of a high yielding Indica rice (Oryza sativa L.) variety PAU 201. New Biotechnology, 2011, 28, 418-422.	4.4	28
38	Zinc Oxide Nanoparticles Interplay With Physiological and Biochemical Attributes in Terminal Heat Stress Alleviation in Mungbean (Vigna radiata L.). Frontiers in Plant Science, 2022, 13, 842349.	3.6	28
39	Transplastomic plants for innovations in agriculture. A review. Agronomy for Sustainable Development, 2015, 35, 1391-1430.	5.3	27
40	Biotechnology and Crop Improvement. Journal of Crop Improvement, 2010, 24, 153-217.	1.7	26
41	Vascular plant one zinc-finger (VOZ) transcription factors: novel regulators of abiotic stress tolerance in rice (Oryza sativa L.). Genetic Resources and Crop Evolution, 2020, 67, 799-807.	1.6	26
42	In vitro development of microcorms and stigma like structures in saffron (Crocus sativus L.). Physiology and Molecular Biology of Plants, 2010, 16, 369-373.	3.1	25
43	Role of Selective Exogenous Elicitors in Plant Responses to Abiotic Stress Tolerance. , 2019, , 273-290.		25
44	Plant Stress Tolerance: Engineering ABA: A Potent Phytohormone. Transcriptomics: Open Access, 2015, 03, .	0.2	25
45	Functional and structural insights into candidate genes associated with nitrogen and phosphorus nutrition in wheat (Triticum aestivum L.). International Journal of Biological Macromolecules, 2018, 118, 76-91.	7.5	24
46	Compatible Solute Engineering of Crop Plants for Improved Tolerance Toward Abiotic Stresses. , 2018, , 221-254.		23
47	Evaluation of potassium solubilizing rhizobacteria (KSR): enhancing K-bioavailability and optimizing K-fertilization of maize plants under Indo-Gangetic Plains of India. Environmental Science and Pollution Research, 2018, 25, 36412-36424.	5.3	22
48	CRISPR-Based Genome Editing Tools: Insights into Technological Breakthroughs and Future Challenges. Genes, 2021, 12, 797.	2.4	22
49	Abscisic Acid: Role in Fruit Development and Ripening. Frontiers in Plant Science, 2022, 13, .	3.6	22
50	Transgenic Approaches for Abiotic Stress Tolerance in Crop Plants. , 2016, , 345-396.		21
51	An Introduction to Antioxidants and Their Roles in Plant Stress Tolerance. , 2017, , 1-23.		21
52	De-novo Domestication for Improving Salt Tolerance in Crops. Frontiers in Plant Science, 2021, 12, 681367.	3.6	19
53	Inducing Fungus-Resistance into Plants through Biotechnology. Notulae Scientia Biologicae, 2010, 2, 14-21.	0.4	18
54	Role and Regulation of Osmolytes as Signaling Molecules to Abiotic Stress Tolerance. , 2019, , 459-477.		18

Shabir H Wani

#	Article	IF	CITATIONS
55	A Critical Review on Iron Toxicity and Tolerance in Plants: Role of Exogenous Phytoprotectants. , 2020, , 83-99.		17
56	Harnessing Crop Wild Relatives for Crop Improvement. LS International Journal of Life Sciences, 2017, 6, 73.	0.2	17
57	Genetic Engineering for Viral Disease Management in Plants. Notulae Scientia Biologicae, 2010, 2, 20-28.	0.4	16
58	QTL mapping and GWAS for identification of loci conferring partial resistance to Pythium sylvaticum in soybean (Glycine max (L.) Merr). Molecular Breeding, 2020, 40, 1.	2.1	16
59	Crosstalk of Multi-Omics Platforms with Plants of Therapeutic Importance. Cells, 2021, 10, 1296.	4.1	16
60	Improving Zinc and Iron Biofortification in Wheat through Genomics Approaches. Molecular Biology Reports, 2022, 49, 8007-8023.	2.3	16
61	Phylogeny and Optimization of TrichodermaÂharzianum for Chitinase Production: Evaluation of Their Antifungal Behaviour against the Prominent Soil Borne Phyto-Pathogens of Temperate India. Microorganisms, 2021, 9, 1962.	3.6	15
62	Compatible Solutes and Abiotic Stress Tolerance in Plants. , 2018, , 213-220.		15
63	Integrating CRISPR-Cas and Next Generation Sequencing in Plant Virology. Frontiers in Genetics, 2021, 12, 735489.	2.3	15
64	Metabolic Engineering of Compatible Solute Trehalose for Abiotic Stress Tolerance in Plants. , 2016, , 83-96.		14
65	Mapping Quantitative Trait Loci for Tolerance to Pythium irregulare in Soybean (Clycine max L.). G3: Genes, Genomes, Genetics, 2018, 8, 3155-3161.	1.8	14
66	Nitrogen use efficiency (NUE): elucidated mechanisms, mapped genes and gene networks in maize (Zea) Tj ETQc	10 0 0 rgB	Г/Qyerlock 1(
67	Genetic Engineering for Cold Stress Tolerance in Crop Plants. , 2016, , 173-201.		13
68	Inoculation of Azospirillum brasilense and exogenous application of trans-zeatin riboside alleviates arsenic induced physiological damages in wheat (Triticum aestivum). Environmental Science and Pollution Research, 2022, , 1.	5.3	13
69	ROS-Induced Signaling and Gene Expression in Crops Under Salinity Stress. , 2017, , 159-184.		12
70	Genome wide in-silico miRNA and target network prediction from stress responsive Horsegram (Macrotyloma uniflorum) accessions. Scientific Reports, 2020, 10, 17203.	3.3	12
71	Recent Advances in Genomics Assisted Breeding for Drought Stress Tolerance in Major Cereals. Journal of Cereal Research, 2020, 12, .	0.1	12
72	Role of Nitrogen and Sulfur in Mitigating Cadmium induced Metabolism Alterations in Plants. The Journal of Plant Science Research, 2019, 35, 121-141.	0.1	12

#	Article	IF	CITATIONS
73	Molecular mechanisms, genetic mapping, and genome editing for insect pest resistance in field crops. Theoretical and Applied Genetics, 2022, 135, 3875-3895.	3.6	12
74	Biopriming of Maize Seeds with a Novel Bacterial Strain SH-6 to Enhance Drought Tolerance in South Korea. Plants, 2022, 11, 1674.	3.5	12
75	Standardizing the Hydrogel Application Rates and Foliar Nutrition for Enhancing Yield of Lentil (Lens) Tj ETQq1	1 0.78431 2.8	4 rgBT /Overl
76	Interactions of phytohormones with abiotic stress factors under changing climate. , 2021, , 221-236.		11
77	Medicinal and Aromatic Plants Under Abiotic Stress: A Crosstalk on Phytohormones' Perspective. , 2021, , 115-132.		11
78	Genome Editing and its Necessity in Agriculture. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 5435-5443.	0.1	11
79	Engineering Crops for the Future: A Phosphoproteomics Approach. Current Protein and Peptide Science, 2018, 19, 413-426.	1.4	11
80	Impact of Nanoparticles on Oxidative Stress and Responsive Antioxidative Defense in Plants. , 2018, , 393-406.		10
81	Genetic variability study in Bread Wheat (Triticum Aestivum L.) under Temperate Conditions. Current Agriculture Research Journal, 2018, 6, 268-277.	0.1	10
82	Wheat Proteins: A Valuable Resources to Improve Nutritional Value of Bread. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	10
83	In Vitro Propagation of Aconitum chasmanthum Stapf Ex Holmes: An Endemic and Critically Endangered Plant Species of the Western Himalaya. Horticulturae, 2021, 7, 586.	2.8	10
84	Understanding the Phytohormones Biosynthetic Pathways for Developing Engineered Environmental Stress-Tolerant Crops. , 2018, , 417-450.		9
85	Molecular mapping of quantitative disease resistance loci for soybean partial resistance to Phytophthora sansomeana. Theoretical and Applied Genetics, 2021, 134, 1977-1987.	3.6	9
86	Micronutrients for Crop Production: Role of Boron. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 5347-5353.	0.1	9
87	MicroRNA as aÂTool for Mitigating Abiotic Stress in Rice (Oryza sativa L.). , 2019, , 109-133.		9
88	MYB-6 and LDOX-1 regulated accretion of anthocyanin response to cold stress in purple black carrot (Daucus carota L.). Molecular Biology Reports, 2022, 49, 5353-5364.	2.3	9
89	Plastid Transformation for Abiotic Stress Tolerance in Plants. Methods in Molecular Biology, 2012, 913, 351-358.	0.9	8
90	Engineering Phytohormones for Abiotic Stress Tolerance in Crop Plants. , 2016, , 247-266.		8

#	Article	IF	CITATIONS
91	Application of Bioinformatics in Understanding of Plant Stress Tolerance. , 2017, , 347-374.		8
92	Oxidative Stress and Leaf Senescence: Important Insights. , 2019, , 139-163.		8
93	Identification for surrogate drought tolerance in maize inbred lines utilizing high-throughput phenomics approach. PLoS ONE, 2021, 16, e0254318.	2.5	8
94	Crop Establishment Methods and Weed Management Practices Affect Grain Yield and Weed Dynamics in Temperate Rice. Agronomy, 2021, 11, 2137.	3.0	8
95	Back to the wild: mining maize (Zea mays L.) disease resistance using advanced breeding tools. Molecular Biology Reports, 2022, 49, 5787-5803.	2.3	8
96	Genome Editing and Trait Improvement in Wheat. , 2021, , 263-283.		7
97	Genomic Selection for Wheat Improvement. , 2021, , 175-207.		7
98	Cryopreservation of Forest Tree Seeds: A Mini-Review. Journal of Forest and Environmental Science, 2016, 32, 311-322.	0.2	7
99	Marker-Assisted Breeding for Resistance Against Wheat Rusts. , 2021, , 229-262.		7
100	Genetic diversity for developing climate-resilient wheats to achieve food security goals. Advances in Agronomy, 2022, 171, 255-303.	5.2	7
101	Combination of Strobilurin and Triazole Chemicals for the Management of Blast Disease in Mushk Budji -Aromatic Rice. Journal of Fungi (Basel, Switzerland), 2021, 7, 1060.	3.5	7
102	Single Nucleotide Polymorphism (SNP) Marker for Abiotic Stress Tolerance in Crop Plants. , 2016, , 327-343.		6
103	Cell and Tissue Culture Approaches in Relation to Crop Improvement. , 2018, , 1-55.		6
104	Salt stress tolerance and small RNA. , 2020, , 191-207.		6
105	Breeding Efforts for Crop Productivity in Abiotic Stress Environment. , 2022, , 63-103.		6
106	Orphan legumes: harnessing their potential for food, nutritional and health security through genetic approaches. Planta, 2022, 256, .	3.2	6
107	Molecular Farming Using Transgenic Approaches. , 2016, , 97-145.		5
108	Response of Pulses to Drought and Salinity Stress Response: A Physiological Perspective. , 2018, , 77-98.		5

#	Article	IF	CITATIONS
109	Plant Genetic Transformation and Transgenic Crops: Methods and Applications. , 2018, , 1-23.		5
110	Potential of Trichoderma species in alleviating the adverse effects of biotic and abiotic stresses in plants. , 2021, , 85-112.		5
111	Osmotic Stress. , 2021, , 445-464.		5
112	Physiological and biochemical properties of wheat (<i>Triticum aestivum</i> L.) under different mulching and water management systems in the semi-arid region of Punjab, Pakistan. Arid Land Research and Management, 2022, 36, 181-196.	1.6	5
113	Identification of C-T novel polymorphism in 3rd exon of OsSPL14 gene governing seed sequence in rice. PLoS ONE, 2022, 17, e0264478.	2.5	5
114	Metabolic Responses of Medicinal Plants to Global Warming, Temperature and Heat Stress. , 2017, , 69-80.		4
115	Effects of Toxic Gases, Ozone, Carbon Dioxide, and Wastes on Plant Secondary Metabolism. , 2017, , 81-96.		4
116	Functional Role of miRNAs: Key Players in Soybean Improvement. Phyton, 2021, 90, 1339-1362.	0.7	4
117	Explicating genetic diversity based on ITS characterization and determination of antioxidant potential in sea buckthorn (Hippophae spp.). Molecular Biology Reports, 2022, 49, 5229-5240.	2.3	4
118	Transcriptional and postâ€ŧranscriptional mechanisms regulating salt tolerance in plants. Physiologia Plantarum, 2021, 173, 1291-1294.	5.2	4
119	Omics Approaches for Cold Stress Tolerance in Plants. , 2019, , 331-356.		3
120	Distribution, Diversity, Conservation and Utilization of Threatened Medicinal Plants. , 2020, , 3-30.		3
121	Multivariate analysis in Mungbean (Vigna radiata L. Wilczek) for Genetic Diversity under Acidic Soils of Manipur, India. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 760-769.	0.1	3
122	In-vitroStigma Like Structure and Stigma Development in Saffron. Vegetos, 2015, 28, 55.	1.5	3
123	Technique to minimize phenolics in walnut in vitro culture initiation. Indian Journal of Horticulture, 2017, 74, 285.	0.1	3
124	Identification of stable lentil (Lens culinaris Medik) genotypes through GGE biplotand AMMI analysis for North Hill Zone of India. Legume Research, 2018, , .	0.1	3
125	Osmosensing and Signalling in Plants: Potential Role in Crop Improvement Under Climate Change. , 2021, , 11-46.		3

Recent Advances in Cytoplasmic Male Sterility (CMS) in Crop Brassicas. , 2020, , 31-48.

3

#	Article	IF	CITATIONS
127	Secondary Metabolite Profiling, Anti-Inflammatory and Hepatoprotective Activity of Neptunia triquetra (Vahl) Benth. Molecules, 2021, 26, 7353.	3.8	3
128	Genetic Modification in Fruits and Vegetables for Improved Nutritional Quality and Extended Shelf Life. , 2018, , 359-379.		2
129	In Vitro Screening of Crop Plants for Abiotic Stress Tolerance. , 2019, , 75-91.		2
130	Wild Cotton Genepool: An Unopened Treasure. , 2021, , 19-53.		2
131	Doubled haploid production in advanced back cross generations and molecular cytogenetic characterization of rye chromatin in triticale �wheat derived doubled haploid lines. Biocell, 2021, 45, 1651-1659.	0.7	2
132	In Vitro Regeneration Studies in Brassica Napus with Response to Callus Induction Frequency and Regeneration Frequency. International Journal of Agriculture Environment and Biotechnology, 2016, 9, 755.	0.1	2
133	Effects of vermicompost and boron on tomato (<i>Solanum lycopersicum</i> cv. Pusa ruby) flowering, fruit ripening, yield and soil fertility in acid soils. International Journal of Agriculture Environment and Biotechnology, 2016, 9, 847.	0.1	2
134	Genetic studies for flower yield and component traits in Chrysanthemum morifolium Ramat. Journal of Applied and Natural Science, 2017, 9, 211-214.	0.4	2
135	Unraveling Omics Based Technologies in Enhancing Abiotic Stress in Genus Rosa: Progress and Prospects. The Journal of Plant Science Research, 2019, 35, 25-38.	0.1	2
136	Accelerated Breeding of Plants: Methods and Applications. , 2020, , 1-29.		2
137	Multimeric Association of Purified Novel Bowman-Birk Inhibitor From the Medicinal Forage Legume Mucuna pruriens (L.) DC Frontiers in Plant Science, 2021, 12, 772046.	3.6	2
138	Sugar Alcohols and Osmotic Stress Adaptation in Plants. , 2021, , 189-203.		2
139	Response of Rice (Oryza sativa L.) Cultivars to Variable Rate of Nitrogen under Wet Direct Seeding in Temperate Ecology. Sustainability, 2022, 14, 638.	3.2	2
140	Mapping of quantitative trait loci for scab resistance in apple (Malus × domestica) variety, Shireen. Molecular Biology Reports, 2022, 49, 5555-5566.	2.3	2
141	CBF-Dependent and CBF-Independent Transcriptional Regulation of Cold Stress Responses in Plants. , 2018, , 89-102.		1
142	Genomics Approaches for Biotic and Abiotic Stress Improvement in Tea. , 2018, , 289-312.		1
143	High-throughput Phenotyping for Abiotic Stress Resilience in Cereals. Journal of Cereal Research, 2021, 13, .	0.1	1
144	Stability analysis for quality, yield and yield attributing traits in heritage rice landrace Zag (Red Rice) of Kashmir Himalayas. Journal of Cereal Research, 2021, 13, .	0.1	1

#	Article	IF	CITATIONS
145	Wheat Wild Germplasm: A Hidden Treasure. , 2021, , 55-63.		1
146	Defensive Mechanisms in Cucurbits against Melon Fly (Bactrocera cucurbitae) Infestation through Excessive Production of Defensive Enzymes and Antioxidants. Molecules, 2021, 26, 6345.	3.8	1
147	Arbuscular Mycorrhiza: A Biological Budding for Sustainable Agriculture. LS International Journal of Life Sciences, 2013, 2, 149.	0.2	1
148	Genotype x environment interaction in Indian mustard (<i>Brassica juncea</i> L. Czern and coss) under Manipur valley conditions. Indian Journal of Genetics and Plant Breeding, 2013, 73, 332.	0.5	1
149	Pre-breeding and Population Improvement. LS International Journal of Life Sciences, 2013, 2, 188.	0.2	1
150	An Assessment of Temperate Rice (Oryza sativa L.) Germplasm for Grain Quality Attributes. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 728-735.	0.1	1
151	Evaluation and Selection of Fine and Semi Fine Rice Grain (Oryza sativa L.) Genotypes for Agro-Morphological Traits under Augmented Block Design in Temperate Conditions of Kashmir Valley. International Journal of Current Microbiology and Applied Sciences, 2019, 8, 1522-1530.	0.1	1
152	Spectrum of Physiological and Molecular Responses in Plant Salinity Stress Tolerance. , 2020, , 1-12.		1
153	Performance of wheat variety Shalimar Wheat-2 under rainfed conditions of temperate Kashmir as influenced by sowing dates and nitrogen levels. Journal of Cereal Research, 2020, 12, .	0.1	1
154	Cross-talk of Compatible Solutes with Other Signalling Pathways in Plants. , 2021, , 205-222.		1
155	Recent advancement in plant genetic engineering for efficient phytoremediation. , 2022, , 195-202.		1
156	Golden Rice: Genetic Engineering, Promises, Present Status and Future Prospects. , 2020, , 581-604.		1
157	Genetic Improvement of Wheat and Barley Using Transgenic Approaches. , 2022, , 623-635.		1
158	Functional Genomic Approaches in Plant Research: Challenges and Perspectives. , 2017, , 147-160.		0
159	AP-3 gene expression study during flower development in saffron (Crocus sativus L.). Acta Horticulturae, 2018, , 47-50.	0.2	0
160	Apocarotenoid gene expression in in vitro developed stigma-like structures in <i>Crocus sativus</i> L Acta Horticulturae, 2018, , 51-54.	0.2	0
161	Development of temperate basmati rice: a multi-year study on performance and adaptation under high altitude conditions of Northern Himalayas. Journal of Agricultural Science, 2019, 157, 611-627.	1.3	0

162 Importance of small RNA in plant metabolism. , 2020, , 125-153.

#	Article	IF	CITATIONS
163	CRISPR/Cas system: A powerful approach for enhanced resistance against rice blast. , 2021, , 649-658.		Ο
164	Isolation of genes/quantitative trait loci for drought stress tolerance in maize , 2021, , 267-281.		0
165	System Biology Approach for Functional Analysis of Medicinal and Aromatic Plants. , 2021, , 629-643.		0
166	Stability analysis in pole type beans (P. vulgaris) under temperate conditions. Legume Research, 0, , .	0.1	0
167	Critical Limits of Phosphorus in Soil and Pea Plant Grown in Acid Soils of Senapati District of Manipur, India. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 3106-3118.	0.1	0
168	Simulating maize yield study at enhanced level of temperature using CERES maize model DSSAT.4.7. Journal of Cereal Research, 2020, 12, .	0.1	0
169	Genetic Diversity Studies in Indian Mustard (Brassica juncea L. Czern & Coss) Using Molecular Markers. , 2020, , 215-244.		Ο
170	Component Analysis in Saffron (Crocus sativus L.) for Floral and Vegetative Attributes. International Journal of Current Microbiology and Applied Sciences, 2020, 9, 556-561.	0.1	0
171	Crop simulation mediated assessment of climate change impact on rice grown under temperate high-altitude valley of Kashmir. Theoretical and Applied Climatology, 2022, 147, 1437-1451.	2.8	Ο
172	Emerging Roles of Osmoprotectants in the Abiotic Stress Tolerance of Plants. , 2021, , 263-287.		0
173	Juvenile heat stress tolerance in Triticum durum—Aegilops tauschii derived synthetics: a way forward for wheat improvement. Molecular Biology Reports, 0, , .	2.3	0