Elizabeth Delorme-Axford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5963479/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Post-transcriptional regulation of <i>ATG1</i> is a critical node that modulates autophagy during distinct nutrient stresses. Autophagy, 2022, 18, 1694-1714.	9.1	8
2	Highlights in the fight against COVID-19: does autophagy play a role in SARS-CoV-2 infection?. Autophagy, 2020, 16, 2123-2127.	9.1	27
3	The LC3-conjugation machinery specifies cargo loading and secretion of extracellular vesicles. Autophagy, 2020, 16, 1169-1171.	9.1	10
4	TEX264 is a major receptor for mammalian reticulophagy. Autophagy, 2019, 15, 1677-1681.	9.1	28
5	On the edge of degradation: Autophagy regulation by RNA decay. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1522.	6.4	11
6	Inflammatory-dependent Sting activation induces antiviral autophagy to limit zika virus in the <i>Drosophila</i> brain. Autophagy, 2019, 15, 1-3.	9.1	38
7	The exoribonuclease Xrn1 is a post-transcriptional negative regulator of autophagy. Autophagy, 2018, 14, 898-912.	9.1	30
8	Transcriptional and post-transcriptional regulation of autophagy in the yeast Saccharomyces cerevisiae. Journal of Biological Chemistry, 2018, 293, 5396-5403.	3.4	51
9	Secretory autophagy holds the key to lysozyme secretion during bacterial infection of the intestine. Autophagy, 2018, 14, 365-367.	9.1	21
10	A three-dimensional culture system recapitulates placental syncytiotrophoblast development and microbial resistance. Science Advances, 2016, 2, e1501462.	10.3	86
11	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
12	Atg41/lcy2 regulates autophagosome formation. Autophagy, 2015, 11, 2288-2299.	9.1	88
13	Rph1/KDM4 Mediates Nutrient-Limitation Signaling that Leads to the Transcriptional Induction of Autophagy. Current Biology, 2015, 25, 546-555.	3.9	96
14	The yeast Saccharomyces cerevisiae: An overview of methods to study autophagy progression. Methods, 2015, 75, 3-12.	3.8	46
15	A missing piece of the puzzle: Atg11 functions as a scaffold to activate Atg1 for selective autophagy. Autophagy, 2015, 11, 2139-2141.	9.1	5
16	Human trophoblasts confer resistance to viruses implicated in perinatal infection. American Journal of Obstetrics and Gynecology, 2015, 212, 71.e1-71.e8.	1.3	92
17	Assays for the biochemical and ultrastructural measurement of selective and nonselective types of autophagy in the yeast Saccharomyces cerevisiae. Methods, 2015, 75, 141-150.	3.8	38
18	The Placenta as a Barrier to Viral Infections. Annual Review of Virology, 2014, 1, 133-146.	6.7	96

#	Article	IF	CITATIONS
19	BPIFB3 Regulates Autophagy and Coxsackievirus B Replication through a Noncanonical Pathway Independent of the Core Initiation Machinery. MBio, 2014, 5, e02147.	4.1	32
20	Human placental trophoblasts confer viral resistance to recipient cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12048-12053.	7.1	398
21	Lipid Raft- and Src Family Kinase-Dependent Entry of Coxsackievirus B into Human Placental Trophoblasts. Journal of Virology, 2013, 87, 8569-8581.	3.4	29
22	Autophagy as a mechanism of antiviral defense at the maternal–fetal interface. Autophagy, 2013, 9, 2173-2174.	9.1	50
23	Focal Adhesion Kinase Is a Component of Antiviral RIG-I-like Receptor Signaling. Cell Host and Microbe, 2012, 11, 153-166.	11.0	43
24	The Coxsackievirus B 3Cpro Protease Cleaves MAVS and TRIF to Attenuate Host Type I Interferon and Apoptotic Signaling. PLoS Pathogens, 2011, 7, e1001311.	4.7	249
25	The Actin Cytoskeleton as a Barrier to Virus Infection of Polarized Epithelial Cells. Viruses, 2011, 3, 2462-2477.	3.3	49