Ioannis Zeimpekis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5963191/publications.pdf

Version: 2024-02-01

623734 794594 20 941 14 19 citations g-index h-index papers 20 20 20 1027 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A New Family of Ultralow Loss Reversible Phaseâ€Change Materials for Photonic Integrated Circuits: Sb ₂ 5 ₃ . Advanced Functional Materials, 2020, 30, 2002447.	14.9	285
2	Nonvolatile programmable silicon photonics using an ultralow-loss Sb ₂ Se ₃ phase change material. Science Advances, 2021, 7, .	10.3	127
3	Field-effect sensors – from pH sensing to biosensing: sensitivity enhancement using streptavidin–biotin as a model system. Analyst, The, 2017, 142, 4173-4200.	3.5	109
4	A dicing free SOI process for MEMS devices. Microelectronic Engineering, 2012, 95, 121-129.	2.4	57
5	Ultra-fast electronic detection of antimicrobial resistance genes using isothermal amplification and Thin Film Transistor sensors. Biosensors and Bioelectronics, 2017, 96, 281-287.	10.1	51
6	Characterization of a Mechanical Motion Amplifier Applied to a MEMS Accelerometer. Journal of Microelectromechanical Systems, 2012, 21, 1032-1042.	2.5	47
7	Deep Learning Enabled Design of Complex Transmission Matrices for Universal Optical Components. ACS Photonics, 2021, 8, 283-295.	6.6	44
8	On-chip sub-wavelength Bragg grating design based on novel low loss phase-change materials. Optics Express, 2020, 28, 16394.	3.4	39
9	High-throughput physical vapour deposition flexible thermoelectric generators. Scientific Reports, 2019, 9, 4393.	3.3	36
10	Low-Cost Nanoribbon Sensors for Protein Analysis in Human Serum Using a Miniature Bead-Based Enzyme-Linked Immunosorbent Assay. Analytical Chemistry, 2016, 88, 4872-4878.	6.5	29
11	Towards low loss non-volatile phase change materials in mid index waveguides. Neuromorphic Computing and Engineering, 2021, 1, 014004.	5.9	24
12	Mechanochromic Reconfigurable Metasurfaces. Advanced Science, 2019, 6, 1900974.	11.2	23
13	Three-Mask Polysilicon Thin-Film Transistor Biosensor. IEEE Transactions on Electron Devices, 2014, 61, 2170-2176.	3.0	17
14	A Review of Capabilities and Scope for Hybrid Integration Offered by Silicon-Nitride-Based Photonic Integrated Circuits. Sensors, 2022, 22, 4227.	3.8	15
15	Time-resolved reversible optical switching of the ultralow-loss phase change material Sb ₂ Se ₃ . Journal of Optics (United Kingdom), 2022, 24, 064013.	2.2	12
16	Observation of Complete Photonic Bandgap in Low Refractive Index Contrast Inverse Rod-Connected Diamond Structured Chalcogenides. ACS Photonics, 2019, 6, 1248-1254.	6.6	11
17	Study of parasitic resistance effects in nanowire and nanoribbon biosensors. Nanoscale Research Letters, 2015, 10, 79.	5.7	8
18	Linear Electron Beam Assisted Roll-to-Roll in-Vacuum Flexographic Patterning for Flexible Thermoelectric Generators. Coatings, 2021, 11, 1470.	2.6	5

#	Article	IF	CITATIONS
19	A Sub-30 mpH Resolution Thin Film Transistor-Based Nanoribbon Biosensing Platform. Sensors, 2017, 17, 2000.	3.8	2
20	Fabrication of micro-scale fracture specimens for nuclear applications by direct laser writing. MRS Advances, 2018, 3, 1771-1775.	0.9	0