Chelsea L Pinkham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5962980/publications.pdf

Version: 2024-02-01

CHEISEN | DINKHAM

#	Article	IF	CITATIONS
1	Nuclear import and export inhibitors alter capsid protein distribution in mammalian cells and reduce Venezuelan Equine Encephalitis Virus replication. Antiviral Research, 2013, 100, 662-672.	1.9	147
2	Venezuelan Equine Encephalitis Virus Induces Apoptosis through the Unfolded Protein Response Activation of EGR1. Journal of Virology, 2016, 90, 3558-3572.	1.5	48
3	Modulation of GSK-3β Activity in Venezuelan Equine Encephalitis Virus Infection. PLoS ONE, 2012, 7, e34761.	1.1	45
4	Selective Inhibitor of Nuclear Export (SINE) Compounds Alter New World Alphavirus Capsid Localization and Reduce Viral Replication in Mammalian Cells. PLoS Neglected Tropical Diseases, 2016, 10, e0005122.	1.3	37
5	Novel inhibitors targeting Venezuelan equine encephalitis virus capsid protein identified using In Silico Structure-Based-Drug-Design. Scientific Reports, 2017, 7, 17705.	1.6	26
6	Sorafenib Impedes Rift Valley Fever Virus Egress by Inhibiting Valosin-Containing Protein Function in the Cellular Secretory Pathway. Journal of Virology, 2017, 91, .	1.5	24
7	Identification of novel antivirals inhibiting recognition of Venezuelan equine encephalitis virus capsid protein by the Importin α/β1 heterodimer through high-throughput screening. Antiviral Research, 2018, 151, 8-19.	1.9	24
8	Enhanced detection of respiratory pathogens with nanotrap particles. Virulence, 2016, 7, 756-769.	1.8	23
9	Signatures of host–pathogen evolutionary conflict reveal MISTR—A conserved MItochondrial STress Response network. PLoS Biology, 2020, 18, e3001045.	2.6	20
10	Rapamycin modulation of p70 S6 kinase signaling inhibits Rift Valley fever virus pathogenesis. Antiviral Research, 2017, 143, 162-175.	1.9	17
11	Alterations in the host transcriptome in vitro following Rift Valley fever virus infection. Scientific Reports, 2017, 7, 14385.	1.6	17
12	Protein Phosphatase 1α Interacts with Venezuelan Equine Encephalitis Virus Capsid Protein and Regulates Viral Replication through Modulation of Capsid Phosphorylation. Journal of Virology, 2018, 92, .	1.5	13
13	Novel RU486 (mifepristone) analogues with increased activity against Venezuelan Equine Encephalitis Virus but reduced progesterone receptor antagonistic activity. Scientific Reports, 2019, 9, 2634.	1.6	13
14	Evolutionary Profile for (Host and Viral) MLKL Indicates Its Activities as a Battlefront for Extensive Counteradaptation. Molecular Biology and Evolution, 2021, 38, 5405-5422.	3.5	13
15	The role of signal transducer and activator of transcription 3 in Rift Valley fever virus infection. Virology, 2016, 496, 175-185.	1.1	12
16	Phosphoproteomic analysis reveals Smad protein family activation following Rift Valley fever virus infection. PLoS ONE, 2018, 13, e0191983.	1.1	10
17	Venezuelan Equine Encephalitis Virus Capsid Implicated in Infection-Induced Cell Cycle Delay in vitro. Frontiers in Microbiology, 2018, 9, 3126.	1.5	8
18	Protein Kinase C subtype l´ interacts with Venezuelan equine encephalitis virus capsid protein and regulates viral RNA binding through modulation of capsid phosphorylation. PLoS Pathogens, 2020, 16, e1008282.	2.1	8

#	Article	IF	CITATIONS
19	Combination Kinase Inhibitor Treatment Suppresses Rift Valley Fever Virus Replication. Viruses, 2018, 10, 191.	1.5	4
20	Host-based processes as therapeutic targets for Rift Valley fever virus. Antiviral Research, 2018, 160, 64-78.	1.9	3
21	Rift Valley fever virus Gn V5-epitope tagged virus enables identification of UBR4 as a Gn interacting protein that facilitates Rift Valley fever virus production. Virology, 2022, 567, 65-76.	1.1	3