Andrea Travan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5962948/publications.pdf

Version: 2024-02-01

331259 329751 37 1,696 21 37 citations h-index g-index papers 38 38 38 2964 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Development of hyaluronan-based membranes for the healing of intestinal surgical wounds: a preliminary study. Journal of Materials Science: Materials in Medicine, 2019, 30, 60.	1.7	1
2	Chitosan-based films with incorporated supercritical CO2 hop extract: Structural, physicochemical, and antibacterial properties. Carbohydrate Polymers, 2019, 219, 261-268.	5.1	47
3	Nucleation, reorganization and disassembly of an active network from lactose-modified chitosan mimicking biological matrices. Carbohydrate Polymers, 2019, 208, 451-456.	5.1	17
4	Exploiting natural polysaccharides to enhance in vitro bio-constructs of primary neurons and progenitor cells. Acta Biomaterialia, 2018, 73, 285-301.	4.1	28
5	Alginate membranes loaded with hyaluronic acid and silver nanoparticles to foster tissue healing and to control bacterial contamination of non-healing wounds. Journal of Materials Science: Materials in Medicine, 2018, 29, 22.	1.7	46
6	Antibacterialâ€nanocomposite bone filler based on silver nanoparticles and polysaccharides. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e747-e759.	1.3	14
7	Mimicking mechanical response of natural tissues. Strain hardening induced by transient reticulation in lactose-modified chitosan (chitlac). International Journal of Biological Macromolecules, 2018, 106, 656-660.	3.6	21
8	Adhesive coatings based on melanin-like nanoparticles for surgical membranes. Colloids and Surfaces B: Biointerfaces, 2017, 155, 553-559.	2.5	20
9	Mechanical and Drug Release Properties of Sponges from Crossâ€linked Cellulose Nanofibers. ChemPlusChem, 2017, 82, 848-858.	1.3	45
10	Boric Acid Induced Transient Cross-Links in Lactose-Modified Chitosan (Chitlac). Biomacromolecules, 2017, 18, 4206-4213.	2.6	21
11	Innovative thermal and acoustic insulation foam from recycled waste glass powder. Journal of Cleaner Production, 2017, 165, 1306-1315.	4.6	67
12	On the demixing of hyaluronan and alginate in the gel state. International Journal of Biological Macromolecules, 2017, 95, 49-53.	3.6	1
13	Hyaluronan delivery by polymer demixing in polysaccharide-based hydrogels and membranes for biomedical applications. Carbohydrate Polymers, 2016, 150, 408-418.	5.1	34
14	Enhanced bioadhesivity of dopamine-functionalized polysaccharidic membranes for general surgery applications. Acta Biomaterialia, 2016, 44, 232-242.	4.1	53
15	H2O2 Causes Improved Adhesion Between a Polysaccharide-based Membrane and Intestinal Serosa. Colloids and Interface Science Communications, 2016, 15, 5-8.	2.0	2
16	Cell-protection mechanism through autophagy in HGFs/S. mitis co-culture treated with Chitlac-nAg. Journal of Materials Science: Materials in Medicine, 2016, 27, 186.	1.7	9
17	Adhesive and sealant interfaces for general surgery applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 626-639.	1.6	122
18	Alginate–Hydroxyapatite Bone Scaffolds with Isotropic or Anisotropic Pore Structure: Material Properties and Biological Behavior. Macromolecular Materials and Engineering, 2015, 300, 989-1000.	1.7	29

#	Article	IF	Citations
19	Silver-containing antimicrobial membrane based on chitosan-TPP hydrogel for the treatment of wounds. Journal of Materials Science: Materials in Medicine, 2015, 26, 128.	1.7	43
20	Rheology of mixed alginate-hyaluronan aqueous solutions. International Journal of Biological Macromolecules, 2015, 78, 363-369.	3.6	6
21	Inkjet printing of Chitlac-nanosilver—a method to create functional coatings for non-metallic bone implants. Biofabrication, 2014, 6, 041001.	3.7	16
22	Polysaccharide-Based Networks from Homogeneous Chitosan-Tripolyphosphate Hydrogels: Synthesis and Characterization. Biomacromolecules, 2014, 15, 3396-3405.	2.6	73
23	Determination of the Composition for Binary Mixtures of Polyanions: The Case of Mixed Solutions of Alginate and Hyaluronan. Biomacromolecules, 2014, 15, 1069-1073.	2.6	3
24	Biological Responses of Human Gingival Fibroblasts (HGFs) in an Innovative Co-Culture Model with Streptococcus mitis to Thermosets Coated with a Silver Polysaccharide Antimicrobial System. PLoS ONE, 2014, 9, e96520.	1.1	17
25	In vitro antimicrobial properties of silver–polysaccharide coatings on porous fiber-reinforced composites for bone implants. Journal of Materials Science: Materials in Medicine, 2013, 24, 2775-2785.	1.7	22
26	Biological responses of silver-coated thermosets: An in vitro and in vivo study. Acta Biomaterialia, 2013, 9, 5088-5099.	4.1	60
27	Polysaccharideâ€Based Polyanion–Polycation–Polyanion Ternary Systems in the Concentrated Regime and Hydrogel Form. Macromolecular Chemistry and Physics, 2013, 214, 1309-1320.	1.1	14
28	Nano-composite scaffolds for bone tissue engineering containing silver nanoparticles: preparation, characterization and biological properties. Journal of Materials Science: Materials in Medicine, 2013, 24, 1799-1807.	1.7	114
29	The Effect of a Silver Nanoparticle Polysaccharide System on Streptococcal and Saliva-Derived Biofilms. International Journal of Molecular Sciences, 2013, 14, 13615-13625.	1.8	34
30	Degradation of Silver–Polysaccharide Nanocomposite in Solution and as Coating on Fiber-Reinforced Composites by Lysozyme and Hydrogen Peroxide. Biomacromolecules, 2012, 13, 2605-2608.	2.6	10
31	Polysaccharide-Coated Thermosets for Orthopedic Applications: From Material Characterization to In Vivo Tests. Biomacromolecules, 2012, 13, 1564-1572.	2.6	43
32	Polysaccharide-Based Polyanion–Polycation–Polyanion Ternary Systems. A Preliminary Analysis of Interpolyelectrolyte Interactions in Dilute Solutions. Biomacromolecules, 2011, 12, 4044-4056.	2.6	17
33	Biological response of hydrogels embedding gold nanoparticles. Colloids and Surfaces B: Biointerfaces, 2011, 83, 331-339.	2.5	63
34	Silver–polysaccharide nanocomposite antimicrobial coatings for methacrylic thermosets. Acta Biomaterialia, 2011, 7, 337-346.	4.1	120
35	Surface Modification and Polysaccharide Deposition on BisGMA/TEGDMA Thermoset. Biomacromolecules, 2010, 11, 583-592.	2.6	28
36	Polyol Synthesis of Silver Nanoparticles: Mechanism of Reduction by Alditol Bearing Polysaccharides. Biomacromolecules, 2009, 10, 210-213.	2.6	54

#	Article	IF	CITATIONS
37	Non-cytotoxic Silver Nanoparticle-Polysaccharide Nanocomposites with Antimicrobial Activity. Biomacromolecules, 2009, 10, 1429-1435.	2.6	377