Shao-Lin Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5962896/publications.pdf Version: 2024-02-01

SHAOLINLL

#	Article	IF	CITATIONS
1	The glycoproteinÂlbα–von Willebrand factor interaction induces platelet apoptosis. Journal of Thrombosis and Haemostasis, 2010, 8, 341-350.	3.8	65
2	Effect of non-uniform growth of TGO layer on cracking behaviors in thermal barrier coatings: A numerical study. Surface and Coatings Technology, 2019, 370, 113-124.	4.8	54
3	Effect of high-temperature hot corrosion on the low cycle fatigue behavior of a directionally solidified nickel-base superalloy. International Journal of Fatigue, 2015, 70, 106-113.	5.7	41
4	Numerical investigation on the cracking behaviors of thermal barrier coating system under different thermal cycle loading waveforms. Surface and Coatings Technology, 2018, 349, 166-176.	4.8	37
5	Numerical study on the competitive cracking behavior in TC and interface for thermal barrier coatings under thermal cycle fatigue loading. Surface and Coatings Technology, 2019, 358, 850-857.	4.8	36
6	Experimental investigation and modelling of microstructure degradation in a DS Ni-based superalloy using a quantitative cross-correlation analysis method. Journal of Alloys and Compounds, 2018, 762, 488-499.	5.5	30
7	Evaluation of service-induced microstructural damage for directionally solidified turbine blade of aircraft engine. Rare Metals, 2019, 38, 157-164.	7.1	24
8	A systematical weight function modified critical distance method to estimate the creep-fatigue life of geometrically different structures. International Journal of Fatigue, 2019, 126, 6-19.	5.7	24
9	Effect of MCrAlY coating on the low-cycle fatigue behavior of a directionally solidified nickel-base superalloy at different temperatures. International Journal of Fatigue, 2015, 75, 126-134.	5.7	23
10	The effect of inclusion factors on fatigue life and fracture-mechanics-based life method for a P/M superalloy at elevated temperature. International Journal of Fatigue, 2020, 131, 105365.	5.7	21
11	A numerical approach to simulate 3D crack propagation in turbine blades. International Journal of Mechanical Sciences, 2020, 171, 105408.	6.7	19
12	A physically based model for correlating the microstructural degradation and residual creep lifetime of a polycrystalline Ni-based superalloy. Journal of Alloys and Compounds, 2019, 783, 565-573.	5.5	16
13	Effect of interface diffusion on low-cycle fatigue behaviors of MCrAlY coated single crystal superalloys. International Journal of Fatigue, 2020, 137, 105660.	5.7	16
14	Influence of MCrAlY coating on low-cycle fatigue behavior of a directionally solidified nickel-based superalloy in hot corrosive environment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 678, 57-64.	5.6	15
15	Influence of the different salt deposits on the fatigue behavior of a directionally solidified nickel-based superalloy. International Journal of Fatigue, 2016, 84, 91-96.	5.7	14
16	Effect of high temperature on compression property and deformation recovery of ceramic fiber reinforced silica aerogel composites. Science China Technological Sciences, 2017, 60, 1681-1691.	4.0	14
17	Residual fatigue life prediction based on a novel damage accumulation model considering loading history. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 1005-1021.	3.4	14
18	Low-temperature hot corrosion effects on the low-cycle fatigue lifetime and cracking behaviors of a powder metallurgy Ni-based superalloy. International Journal of Fatigue, 2018, 116, 334-343.	5.7	13

Shao-Lin Li

#	Article	IF	CITATIONS
19	Effects of tensile load hold time on the fatigue and corrosion-fatigue behavior of turbine blade materials. International Journal of Fatigue, 2021, 152, 106448.	5.7	13
20	Modeling fatigue crack growth for a through thickness crack: An out-of-plane constraint-based approach considering thickness effect. International Journal of Mechanical Sciences, 2020, 178, 105625.	6.7	12
21	Mechanical properties deterioration and its relationship with microstructural variation using small coupons sampled from serviced turbine blades. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 757, 134-145.	5.6	11
22	Cracking behaviors of EB-PVD thermal barrier coating under temperature gradient. Ceramics International, 2019, 45, 18518-18528.	4.8	11
23	The influence of temperature and orientation on fatigue crack growth behavior of a directional solidification nickel-based superalloy: Experimental investigation and modelling. International Journal of Fatigue, 2019, 125, 505-519.	5.7	10
24	A Study on Establishing a Microstructure-Related Hardness Model with Precipitate Segmentation Using Deep Learning Method. Materials, 2020, 13, 1256.	2.9	10
25	Oxidation-induced damage of an uncoated and coated nickel-based superalloy under simulated gas environment. Rare Metals, 2018, 37, 204-209.	7.1	9
26	Low-cycle fatigue behavior of a directionally solidified Ni-based superalloy subjected to gas hot corrosion pre-exposure. Rare Metals, 2019, 38, 227-232.	7.1	9
27	The framework of hot corrosion fatigue life estimation of a PM superalloy using notch fatigue methodology combined with pit evolution. International Journal of Fatigue, 2021, 153, 106483.	5.7	9
28	Effect of bond-coat surface roughness on failure mechanism and lifetime of air plasma spraying thermal barrier coatings. Science China Technological Sciences, 2019, 62, 989-995.	4.0	7
29	Experimental investigation on creepâ€fatigue behaviours of asâ€received and serviceâ€exposed turbine blades: Mechanism and life evaluation. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 2892-2906.	3.4	7
30	Hypergravity results in human platelet hyperactivity. Journal of Physiology and Biochemistry, 2009, 65, 147-156.	3.0	6
31	Experimental study and numerical modeling of the damage evolution of thermal barrier coating systems under tension. Science China Technological Sciences, 2018, 61, 1882-1888.	4.0	6
32	High-temperature hot-corrosion effects on the creep–fatigue behavior of a directionally solidified nickel-based superalloy: Mechanism and lifetime prediction. International Journal of Damage Mechanics, 2020, 29, 798-809.	4.2	6
33	A diffusion-coupled cohesive element model for cracking analysis of thermal barrier coatings. Engineering Fracture Mechanics, 2021, 246, 107625.	4.3	6
34	Failure assessment of the first stage highâ€pressure turbine blades in an aeroâ€engine turbine. Fatigue and Fracture of Engineering Materials and Structures, 2017, 40, 2092-2106.	3.4	5
35	Fatigue behavior of uncoated and MCrAlY-coated DS nickel-based superalloys pre-exposed in hot corrosion condition. Rare Metals, 2018, 37, 936-941.	7.1	5
36	Low-cycle fatigue of MCrAlY-coated superalloys: A fracture mechanics-based analysis. Materials Science and Technology, 2021, 37, 151-161.	1.6	5

Shao-Lin Li

#	Article	IF	CITATIONS
37	High-temperature oxidation behavior of DZ125 Ni-based superalloy under tensile stress. Rare Metals, 2022, 41, 4188-4193.	7.1	4
38	Microstructural evolution and restoration of creep property for a damaged K403 alloy after rejuvenation heat treatments. Rare Metals, 2021, 40, 1865-1871.	7.1	4
39	Tensile properties and failure analysis of Ti–6Al–4V joints by electron beam welding. Rare Metals, 2016, 35, 450-455.	7.1	3
40	A novel fatigue life model considering surface-damage induced performance degradation. Engineering Fracture Mechanics, 2020, 228, 106899.	4.3	3
41	Modeling of the fatigue crack growth of nickel-based superalloy using a constraint-based approach considering thickness. Engineering Fracture Mechanics, 2022, 259, 108174.	4.3	3
42	Low cyclic fatigue behavior of electron-beam-welded Ti–6Al–4V titanium joint. Rare Metals, 2016, 35, 230-234.	7.1	2
43	The effect of thermal loading waveform on the failure mechanism of atmospheric-plasma-sprayed thermal barrier coating system. Science China Technological Sciences, 2018, 61, 1679-1687.	4.0	1
44	Low-cycle fatigue behavior of DZ125 superalloy under prior exposure conditions. Rare Metals, 2017, , 1.	7.1	0
45	Stress analysis and lifetime prediction for Ti–6Al–4V welding joint under fatigue loading. Materials Science and Technology, 2021, 37, 969-978.	1.6	0