

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5962890/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Declining global warming effects on the phenology of spring leaf unfolding. Nature, 2015, 526, 104-107.	13.7	637
2	A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic and Applied Ecology, 2020, 45, 86-103.	1.2	482
3	Leaf phenology sensitivity to temperature in European trees: Do within-species populations exhibit similar responses?. Agricultural and Forest Meteorology, 2009, 149, 735-744.	1.9	324
4	Assessing the effects of climate change on the phenology of European temperate trees. Agricultural and Forest Meteorology, 2011, 151, 969-980.	1.9	286
5	Variation in leaf flushing date influences autumnal senescence and next year's flushing date in two temperate tree species. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7355-7360.	3.3	254
6	Altitudinal differentiation in growth and phenology among populations of temperate-zone tree species growing in a common garden. Canadian Journal of Forest Research, 2009, 39, 1259-1269.	0.8	253
7	Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology. Oecologia, 2009, 161, 187-198.	0.9	248
8	Global warming leads to more uniform spring phenology across elevations. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1004-1008.	3.3	237
9	The interaction between freezing tolerance and phenology in temperate deciduous trees. Frontiers in Plant Science, 2014, 5, 541.	1.7	229
10	Quantifying phenological plasticity to temperature in two temperate tree species. Functional Ecology, 2010, 24, 1211-1218.	1.7	203
11	Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models. Annals of Forest Science, 2016, 73, 5-25.	0.8	187
12	What role for photoperiod in the bud burst phenology of European beech. European Journal of Forest Research, 2013, 132, 1-8.	1.1	177
13	Where, why and how? Explaining the lowâ€ŧemperature range limits of temperate tree species. Journal of Ecology, 2016, 104, 1076-1088.	1.9	171
14	Shorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to later snow onset. Climatic Change, 2016, 139, 637-649.	1.7	160
15	Unexpected role of winter precipitation in determining heat requirement for spring vegetation greenâ€up at northern middle and high latitudes. Global Change Biology, 2014, 20, 3743-3755.	4.2	159
16	Increased heat requirement for leaf flushing in temperate woody species over 1980–2012: effects of chilling, precipitation and insolation. Global Change Biology, 2015, 21, 2687-2697.	4.2	158
17	To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech?. Tree Physiology, 2011, 31, 1164-1174.	1.4	157
18	Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species. Global Change Biology, 2019, 25, 3781-3792.	4.2	152

#	Article	lF	CITATIONS
19	European deciduous trees exhibit similar safety margins against damage by spring freeze events along elevational gradients. New Phytologist, 2013, 200, 1166-1175.	3.5	144
20	Ontogenic changes rather than difference in temperature cause understory trees to leaf out earlier. New Phytologist, 2013, 198, 149-155.	3.5	143
21	Increase in the risk of exposure of forest and fruit trees to spring frosts at higher elevations in Switzerland over the last four decades. Agricultural and Forest Meteorology, 2018, 248, 60-69.	1.9	142
22	Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12192-12200.	3.3	140
23	Elevational adaptation and plasticity in seedling phenology of temperate deciduous tree species. Oecologia, 2013, 171, 663-678.	0.9	122
24	Phenological and elevational shifts of plants, animals and fungi under climate change in the <scp>E</scp> uropean <scp>A</scp> lps. Biological Reviews, 2021, 96, 1816-1835.	4.7	102
25	Vapor–pressure deficit and extreme climatic variables limit tree growth. Global Change Biology, 2018, 24, 1108-1122.	4.2	88
26	Daylength helps temperate deciduous trees to leafâ€out at the optimal time. Global Change Biology, 2019, 25, 2410-2418.	4.2	88
27	The relative importance of disturbance and environmental stress at local and regional scales in French coastal sand dunes. Journal of Vegetation Science, 2008, 19, 493-502.	1.1	87
28	Warmer winters reduce the advance of tree spring phenology induced by warmer springs in the Alps. Agricultural and Forest Meteorology, 2018, 252, 220-230.	1.9	87
29	Is the use of cuttings a good proxy to explore phenological responses of temperate forests in warming and photoperiod experiments?. Tree Physiology, 2014, 34, 174-183.	1.4	83
30	Earlier leafâ€out rather than difference in freezing resistance puts juvenile trees at greater risk of damage than adult trees. Journal of Ecology, 2014, 102, 981-988.	1.9	83
31	Monitoring elevation variations in leaf phenology of deciduous broadleaf forests from SPOT/VEGETATION time-series. Remote Sensing of Environment, 2011, 115, 615-627.	4.6	76
32	Coordination between growth, phenology and carbon storage in three coexisting deciduous tree species in a temperate forest. Tree Physiology, 2016, 36, 847-855.	1.4	76
33	Chilling and heat requirements for leaf unfolding in European beech and sessile oak populations at the southern limit of their distribution range. International Journal of Biometeorology, 2014, 58, 1853-1864.	1.3	75
34	Frost hardening and dehardening potential in temperate trees from winter to budburst. New Phytologist, 2017, 216, 113-123.	3.5	69
35	Tree recruitment of European tree species at their current upper elevational limits in the Swiss Alps. Journal of Biogeography, 2012, 39, 1439-1449.	1.4	67
36	What is the potential of silver fir to thrive under warmer and drier climate?. European Journal of Forest Research, 2019, 138, 547-560.	1.1	65

#	Article	IF	CITATIONS
37	Unprecedented risk of spring frost damage in Switzerland and Germany in 2017. Climatic Change, 2018, 149, 233-246.	1.7	64
38	Short photoperiod reduces the temperature sensitivity of leafâ€out in saplings of <i>Fagus sylvatica</i> but not in horse chestnut. Global Change Biology, 2019, 25, 1696-1703.	4.2	63
39	Convergence of leafâ€out towards minimum risk of freezing damage in temperate trees. Functional Ecology, 2016, 30, 1480-1490.	1.7	59
40	Number of growth days and not length of the growth period determines radial stem growth of temperate trees. Ecology Letters, 2022, 25, 427-439.	3.0	58
41	Do the elevational limits of deciduous tree species match their thermal latitudinal limits?. Global Ecology and Biogeography, 2013, 22, 913-923.	2.7	52
42	Impact of microclimatic conditions and resource availability on spring and autumn phenology of temperate tree seedlings. New Phytologist, 2021, 232, 537-550.	3.5	49
43	Chilled to be forced: the best dose to wake up buds from winter dormancy. New Phytologist, 2021, 230, 1366-1377.	3.5	47
44	How accurately can minimum temperatures at the cold limits of tree species be extrapolated from weather station data?. Agricultural and Forest Meteorology, 2014, 184, 257-266.	1.9	46
45	The great acceleration of plant phenological shifts. Nature Climate Change, 2022, 12, 300-302.	8.1	40
46	Genetic vs. nonâ€genetic responses of leaf morphology and growth to elevation in temperate tree species. Functional Ecology, 2014, 28, 243-252.	1.7	39
47	Asymmetric effects of cooler and warmer winters on beech phenology last beyond spring. Global Change Biology, 2017, 23, 4569-4580.	4.2	39
48	How do climate change experiments alter plotâ€scale climate?. Ecology Letters, 2019, 22, 748-763.	3.0	39
49	Are plant pathogen populations adapted for encounter with their host? A case study of phenological synchrony between oak and an obligate fungal parasite along an altitudinal gradient. Journal of Evolutionary Biology, 2010, 23, 87-97.	0.8	38
50	Shifts in the temperatureâ€sensitive periods for spring phenology in European beech and pedunculate oak clones across latitudes and over recent decades. Global Change Biology, 2020, 26, 1808-1819.	4.2	38
51	Climate warming increases spring phenological differences among temperate trees. Global Change Biology, 2020, 26, 5979-5987.	4.2	37
52	Premature leaf discoloration of European deciduous trees is caused by drought and heat in late spring and cold spells in early fall. Agricultural and Forest Meteorology, 2021, 307, 108492.	1.9	35
53	Fast acclimation of freezing resistance suggests no influence of winter minimum temperature on the range limit of European beech. Tree Physiology, 2016, 36, 490-501.	1.4	31
54	Competition and demography rather than dispersal limitation slow down upward shifts of trees' upper elevation limits in the Alps. Journal of Ecology, 2020, 108, 2416-2430.	1.9	31

#	Article	IF	CITATIONS
55	Intensity, frequency and spatial configuration of winter temperature inversions in the closed La Brevine valley, Switzerland. Theoretical and Applied Climatology, 2017, 130, 1073-1083.	1.3	29
56	â€~Hearing' alpine plants growing after snowmelt: ultrasonic snow sensors provide long-term series of alpine plant phenology. International Journal of Biometeorology, 2017, 61, 349-361.	1.3	26
57	Growth and carbon relations of temperate deciduous tree species at their upper elevation range limit. Journal of Ecology, 2014, 102, 1537-1548.	1.9	25
58	Unchanged risk of frost exposure for subalpine and alpine plants after snowmelt in Switzerland despite climate warming. International Journal of Biometeorology, 2018, 62, 1755-1762.	1.3	23
59	Atmospheric brightening counteracts warmingâ€induced delays in autumn phenology of temperate trees in Europe. Global Ecology and Biogeography, 2021, 30, 2477-2487.	2.7	23
60	Phenological shifts induced by climate change amplify drought for broad-leaved trees at low elevations in Switzerland. Agricultural and Forest Meteorology, 2021, 307, 108485.	1.9	22
61	Shortened temperatureâ€relevant period of spring leafâ€out in temperateâ€zone trees. Global Change Biology, 2019, 25, 4282-4290.	4.2	20
62	The frequency and severity of past droughts shape the drought sensitivity of juniper trees on the Tibetan plateau. Forest Ecology and Management, 2021, 486, 118968.	1.4	19
63	Unrestricted quality of seeds in European broad-leaved tree species growing at the cold boundary of their distribution. Annals of Botany, 2012, 109, 473-480.	1.4	17
64	Früher Laubfall der Buche wärend der Sommertrockenheit 2018: Resistenz oder Schwähesymptom?. Schweizerische Zeitschrift Fur Forstwesen, 2020, 171, 257-269.	0.5	16
65	Assessing the relative importance of sunshine, temperature, precipitation, and spring phenology in regulating leaf senescence timing of herbaceous species in China. Agricultural and Forest Meteorology, 2022, 313, 108770.	1.9	16
66	High plasticity in germination and establishment success in the dominant forest tree <i>Fagus sylvatica</i> across Europe. Global Ecology and Biogeography, 2021, 30, 1583-1596.	2.7	15
67	Daily Maximum Temperatures Induce Lagged Effects on Leaf Unfolding in Temperate Woody Species Across Large Elevational Gradients. Frontiers in Plant Science, 2019, 10, 398.	1.7	14
68	Post-glacial re-colonization and natural selection have shaped growth responses of silver fir across Europe. Science of the Total Environment, 2021, 779, 146393.	3.9	14
69	Temperature rather than individual growing period length determines radial growth of sessile oak in the Pyrenees. Agricultural and Forest Meteorology, 2022, 317, 108885.	1.9	11
70	Warming may extend tree growing seasons and compensate for reduced carbon uptake during dry periods. Journal of Ecology, 2022, 110, 1575-1589.	1.9	10
71	Long-term linear trends mask phenological shifts. International Journal of Biometeorology, 2016, 60, 1611-1613.	1.3	9
72	The sensitivity of ginkgo leaf unfolding to the temperature and photoperiod decreases with increasing elevation. Agricultural and Forest Meteorology, 2022, 315, 108840.	1.9	8

#	Article	IF	CITATIONS
73	Assessing the Effectiveness of in-situ Active Warming Combined With Open Top Chambers to Study Plant Responses to Climate Change. Frontiers in Plant Science, 2020, 11, 539584.	1.7	7
74	Impacts of a strong El Niño event on leaf phenology and carbon dioxide exchange in a secondary dry dipterocarp forest. Agricultural and Forest Meteorology, 2020, 287, 107945.	1.9	7
75	Higher temperature sensitivity of flowering than leafâ€out alters the time between phenophases across temperate tree species. Global Ecology and Biogeography, 2022, 31, 901-911.	2.7	7
76	Impact of Severe Drought during the Strong 2015/2016 El Nino on the Phenology and Survival of Secondary Dry Dipterocarp Species in Western Thailand. Forests, 2019, 10, 967.	0.9	5
77	Rising air humidity during spring does not trigger leafâ€out in temperate woody plants. New Phytologist, 2020, 225, 16-20.	3.5	3
78	Editorial: Experimental Manipulations to Predict Future Plant Phenology. Frontiers in Plant Science, 2020, 11, 637156.	1.7	3
79	Quel avenir pour le sapin blanc en Suisse sous les effets des changements climatiques?. Schweizerische Zeitschrift Fur Forstwesen, 2018, 169, 131-142.	0.5	1