Birthe B Kragelund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5962739/publications.pdf

Version: 2024-02-01

150	7,082	45	75
papers	citations	h-index	g-index
165	165	165	8185
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The denatured state of <scp>HIV</scp> â€1 protease under native conditions. Proteins: Structure, Function and Bioinformatics, 2022, 90, 96-109.	2.6	1
2	Structure, dynamics, and stability of the globular domain of human linker histone <scp>H1</scp> .0 and the role of positive charges. Protein Science, 2022, 31, 918-932.	7.6	7
3	The highly disordered protein prothymosin alpha as a novel neuroprotector of the brain. Biophysical Journal, 2022, 121, 58a.	0.5	0
4	Insight into calcium-binding motifs of intrinsically disordered proteins. Biophysical Journal, 2022, 121, 300a.	0.5	0
5	$\hat{l}\pm\hat{l}\pm$ -hub coregulator structure and flexibility determine transcription factor binding and selection in regulatory interactomes. Journal of Biological Chemistry, 2022, 298, 101963.	3.4	5
6	Disorder in a two-domain neuronal Ca2+-binding protein regulates domain stability and dynamics using ligand mimicry. Cellular and Molecular Life Sciences, 2021, 78, 2263-2278.	5.4	4
7	Connecting the $\hat{l}\pm\hat{l}\pm$ -hubs: same fold, disordered ligands, new functions. Cell Communication and Signaling, 2021, 19, 2.	6.5	9
8	$\hat{l}\pm\hat{l}\pm$ -Hub domains and intrinsically disordered proteins: A decisive combo. Journal of Biological Chemistry, 2021, 296, 100226.	3.4	16
9	Evolution of A bHLH Interaction Motif. International Journal of Molecular Sciences, 2021, 22, 447.	4.1	5
10	Dynamic Na+/H+ exchanger 1 (NHE1) – calmodulin complexes of varying stoichiometry and structure regulate Ca2+-dependent NHE1 activation. ELife, 2021, 10, .	6.0	11
11	Binding Sites for Oligosaccharide Repeats from Lactic Acid Bacteria Exopolysaccharides on Bovine β-Lactoglobulin Identified by NMR Spectroscopy. ACS Omega, 2021, 6, 9039-9052.	3.5	7
12	Refinement of \hat{l}_{\pm} -Synuclein Ensembles Against SAXS Data: Comparison of Force Fields and Methods. Frontiers in Molecular Biosciences, 2021, 8, 654333.	3.5	51
13	Ubiquitin Interacting Motifs: Duality Between Structured and Disordered Motifs. Frontiers in Molecular Biosciences, 2021, 8, 676235.	3.5	6
14	Order and disorder—An integrative structure of the full-length human growth hormone receptor. Science Advances, 2021, 7, .	10.3	25
15	On the specificity of protein–protein interactions in the context of disorder. Biochemical Journal, 2021, 478, 2035-2050.	3.7	41
16	The disordered PCI â€binding human proteins CSNAP and DSS1 have diverged in structure and function. Protein Science, 2021, 30, 2069-2082.	7.6	8
17	Insight into Calcium-Binding Motifs of Intrinsically Disordered Proteins. Biomolecules, 2021, 11, 1173.	4.0	16
18	On the Potential of Machine Learning to Examine the Relationship Between Sequence, Structure, Dynamics and Function of Intrinsically Disordered Proteins. Journal of Molecular Biology, 2021, 433, 167196.	4.2	51

#	Article	IF	Citations
19	Quantification of Conformational Entropy Unravels Effect of Disordered Flanking Region in Coupled Folding and Binding. Journal of the American Chemical Society, 2021, 143, 14540-14550.	13.7	22
20	Flanking Disorder of the Folded $\hat{l}\pm\hat{l}\pm$ -Hub Domain from Radical Induced Cell Death1 Affects Transcription Factor Binding by Ensemble Redistribution. Journal of Molecular Biology, 2021, 433, 167320.	4.2	17
21	IDDomainSpotter: Compositional bias reveals domains in long disordered protein regions—Insights from transcription factors. Protein Science, 2020, 29, 169-183.	7.6	14
22	Polyelectrolyte interactions enable rapid association and dissociation in high-affinity disordered protein complexes. Nature Communications, 2020, 11, 5736.	12.8	74
23	Effects of Ligand Binding on the Energy Landscape of Acyl-CoA-Binding Protein. Biophysical Journal, 2020, 119, 1821-1832.	0.5	15
24	Orchestration of signaling by structural disorder in class 1 cytokine receptors. Cell Communication and Signaling, 2020, 18, 132.	6.5	20
25	The Non-Fibrillating N-Terminal of α-Synuclein Binds and Co-Fibrillates with Heparin. Biomolecules, 2020, 10, 1192.	4.0	6
26	The intracellular lipid-binding domain of human Na+/H+ exchanger 1 forms a lipid-protein co-structure essential for activity. Communications Biology, 2020, 3, 731.	4.4	11
27	Interactions by Disorder – A Matter of Context. Frontiers in Molecular Biosciences, 2020, 7, 110.	3.5	124
28	Yeast recombinant production of intact human membrane proteins with long intrinsically disordered intracellular regions for structural studies. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183272.	2.6	6
29	Mutations in a Single Signaling Pathway Allow Cell Growth in Heavy Water. ACS Synthetic Biology, 2020, 9, 733-748.	3.8	14
30	Efficient refolding and reconstitution of tissue factor into nanodiscs facilitates structural investigation of a multicomponent system on a lipid bilayer. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183214.	2.6	3
31	Peptides containing the PCNA interacting motif APIM bind to the \hat{l}^2 -clamp and inhibit bacterial growth and mutagenesis. Nucleic Acids Research, 2020, 48, 5540-5554.	14.5	20
32	Avidity within the Nâ€terminal anchor drives αâ€synuclein membrane interaction and insertion. FASEB Journal, 2020, 34, 7462-7482.	0.5	28
33	Specificity of MYB interactions relies on motifs in ordered and disordered contexts. Nucleic Acids Research, 2019, 47, 9592-9608.	14.5	30
34	Molecular basis for the binding and selective dephosphorylation of Na+/H+ exchanger 1 by calcineurin. Nature Communications, 2019, 10, 3489.	12.8	36
35	Transmembrane Protein Aptamer Induces Cooperative Signaling by the EPO Receptor and the Cytokine Receptor β-Common Subunit. IScience, 2019, 17, 167-181.	4.1	15
36	R2R3 MYB Transcription Factors – Functions outside the DNA-Binding Domain. Trends in Plant Science, 2019, 24, 934-946.	8.8	109

#	Article	IF	Citations
37	Random coil chemical shifts for serine, threonine and tyrosine phosphorylation over a broad pH range. Journal of Biomolecular NMR, 2019, 73, 713-725.	2.8	24
38	The PCNA interaction motifs revisited: thinking outside the PIP-box. Cellular and Molecular Life Sciences, 2019, 76, 4923-4943.	5.4	77
39	Dynamical Oligomerisation of Histidine Rich Intrinsically Disordered Proteins Is Regulated through Zinc-Histidine Interactions. Biomolecules, 2019, 9, 168.	4.0	22
40	Alginate Trisaccharide Binding Sites on the Surface of \hat{l}^2 -Lactoglobulin Identified by NMR Spectroscopy: Implications for Molecular Network Formation. ACS Omega, 2019, 4, 6165-6174.	3.5	11
41	Distinct α-Synuclein:Lipid Co-Structure Complexes Affect Amyloid Nucleation through Fibril Mimetic Behavior. Biochemistry, 2019, 58, 5052-5065.	2.5	12
42	Evolutionary conservation of the intrinsic disorder-based Radical-Induced Cell Death1 hub interactome. Scientific Reports, 2019, 9, 18927.	3.3	19
43	The transmembrane autophagy cargo receptors ATI1 and ATI2 interact with ATG8 through intrinsically disordered regions with distinct biophysical properties. Biochemical Journal, 2019, 476, 449-465.	3.7	24
44	Extreme disorder in an ultrahigh-affinity protein complex. Nature, 2018, 555, 61-66.	27.8	538
45	Structure of Radical-Induced Cell Death 1 Hub Domain Reveals a Common $\hat{l}\pm\hat{l}\pm$ -Scaffold for Disorder in Transcriptional Networks. Structure, 2018, 26, 734-746.e7.	3.3	28
46	Role of protein dynamics in transmembrane receptor signalling. Current Opinion in Structural Biology, 2018, 48, 74-82.	5.7	26
47	The Complex Conformational Dynamics of Neuronal Calcium Sensor-1: A Single Molecule Perspective. Frontiers in Molecular Neuroscience, 2018, 11, 468.	2.9	13
48	Expanded Interactome of the Intrinsically Disordered Protein Dss1. Cell Reports, 2018, 25, 862-870.	6.4	14
49	Characterization of Dynamic IDP Complexes by NMR Spectroscopy. Methods in Enzymology, 2018, 611, 193-226.	1.0	29
50	Cytokine Receptors. Endocrinology, 2018, , 157-185.	0.1	6
51	A disordered acidic domain in GPIHBP1 harboring a sulfated tyrosine regulates lipoprotein lipase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6020-E6029.	7.1	51
52	Cold Denaturation of the HIV-1 Protease Monomer. Biochemistry, 2017, 56, 1029-1032.	2.5	7
53	A phosphorylation-motif for tuneable helix stabilisation in intrinsically disordered proteins – Lessons from the sodium proton exchanger 1 (NHE1). Cellular Signalling, 2017, 37, 40-51.	3.6	34
54	Functions of intrinsic disorder in transmembrane proteins. Cellular and Molecular Life Sciences, 2017, 74, 3205-3224.	5.4	63

#	Article	IF	CITATIONS
55	(S)Pinning down protein interactions by NMR. Protein Science, 2017, 26, 436-451.	7.6	58
56	An Efficient Method for Estimating the Hydrodynamic Radius of Disordered Protein Conformations. Biophysical Journal, 2017, 113, 550-557.	0.5	110
57	Behaviour of intrinsically disordered proteins in protein–protein complexes with an emphasis on fuzziness. Cellular and Molecular Life Sciences, 2017, 74, 3175-3183.	5.4	104
58	Eukaryotic transcription factors: paradigms of protein intrinsic disorder. Biochemical Journal, 2017, 474, 2509-2532.	3.7	108
59	Structures and Short Linear Motif of Disordered Transcription Factor Regions Provide Clues to the Interactome of the Cellular Hub Protein Radical-induced Cell Death1. Journal of Biological Chemistry, 2017, 292, 512-527.	3.4	55
60	Deoxynucleoside Salvage in Fission Yeast Allows Rescue of Ribonucleotide Reductase Deficiency but Not Spd1-Mediated Inhibition of Replication. Genes, 2017, 8, 128.	2.4	5
61	Single methyl groups can act as toggle switches to specify transmembrane Protein-protein interactions. ELife, 2017, 6, .	6.0	14
62	Cytokine Receptors. Endocrinology, 2017, , 1-29.	0.1	1
63	The Ku70 80 ring in Non-Homologous End-Joining easy to slip on hard to remove. Frontiers in Bioscience - Landmark, 2016, 21, 514-527.	3.0	32
64	Prolactin Signaling Stimulates Invasion via Na+/H+ Exchanger NHE1 in T47D Human Breast Cancer Cells. Molecular Endocrinology, 2016, 30, 693-708.	3.7	23
65	A combined computational and structural model of the full-length human prolactin receptor. Nature Communications, 2016, 7, 11578.	12.8	52
66	DSS1/Sem1, a Multifunctional and Intrinsically Disordered Protein. Trends in Biochemical Sciences, 2016, 41, 446-459.	7.5	42
67	Understanding singleâ€pass transmembrane receptor signaling from a structural viewpoint—what are we missing?. FEBS Journal, 2016, 283, 4424-4451.	4.7	49
68	The human Na+/H+ exchanger 1 is a membrane scaffold protein for extracellular signal-regulated kinase 2. BMC Biology, 2016, 14, 31.	3.8	45
69	An efficient arabinoxylan-debranching \hat{l} ±- l -arabinofuranosidase of family GH62 from Aspergillus nidulans contains a secondary carbohydrate binding site. Applied Microbiology and Biotechnology, 2016, 100, 6265-6277.	3.6	23
70	Cytokine Receptors. Endocrinology, 2016, , 1-29.	0.1	4
71	A de Novoâ€Designed Monomeric, Compact Threeâ€Helixâ€Bundle Protein on a Carbohydrate Template. ChemBioChem, 2015, 16, 1905-1918.	2.6	2
72	Globular and disorderedâ€"the non-identical twins in protein-protein interactions. Frontiers in Molecular Biosciences, 2015, 2, 40.	3.5	36

#	Article	IF	Citations
73	Functional Characterization of a Conserved Archaeal Viral Operon Revealing Single-Stranded DNA Binding, Annealing and Nuclease Activities. Journal of Molecular Biology, 2015, 427, 2179-2191.	4.2	32
74	Intrinsically disordered cytoplasmic domains of two cytokine receptors mediate conserved interactions with membranes. Biochemical Journal, 2015, 468, 495-506.	3.7	68
75	Residue 146 regulates prolactin receptor folding, basal activity and ligand-responsiveness: Potential implications in breast tumorigenesis. Molecular and Cellular Endocrinology, 2015, 401, 173-188.	3.2	14
76	Protein intrinsic disorder in <i>Arabidopsis</i> NAC transcription factors: transcriptional activation by ANAC013 and ANAC046 and their interactions with RCD1. Biochemical Journal, 2015, 465, 281-294.	3.7	48
77	Single-Molecule Folding Mechanisms of the apo- and Mg2+-Bound States of Human Neuronal Calcium Sensor-1. Biophysical Journal, 2015, 109, 113-123.	0.5	16
78	A Residue Quartet in the Extracellular Domain of the Prolactin Receptor Selectively Controls Mitogen-activated Protein Kinase Signaling. Journal of Biological Chemistry, 2015, 290, 11890-11904.	3.4	4
79	Exploiting Hydrophobicity for Efficient Production of Transmembrane Helices for Structure Determination by NMR Spectroscopy. Analytical Chemistry, 2015, 87, 9126-9131.	6.5	11
80	A Two-step Protein Quality Control Pathway for a Misfolded DJ-1 Variant in Fission Yeast. Journal of Biological Chemistry, 2015, 290, 21141-21153.	3.4	22
81	Single Site Suppressors of a Fission Yeast Temperature-Sensitive Mutant in cdc48 Identified by Whole Genome Sequencing. PLoS ONE, 2015, 10, e0117779.	2.5	8
82	Dss1 Is a 26S Proteasome Ubiquitin Receptor. Molecular Cell, 2014, 56, 453-461.	9.7	81
83	Spd2 assists Spd1 in modulation of RNR architecture but does not regulate deoxynucleotide pools. Journal of Cell Science, 2014, 127, 2460-70.	2.0	11
84	Structural Dynamics and Regulation of the Mammalian SLC9A Family of Na+/H+ Exchangers. Current Topics in Membranes, 2014, 73, 69-148.	0.9	71
85	Direct single-molecule observation of calcium-dependent misfolding in human neuronal calcium sensor-1. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13069-13074.	7.1	45
86	Who climbs the tryptophan ladder? On the structure and function of the WSXWS motif in cytokine receptors and thrombospondin repeats. Cytokine and Growth Factor Reviews, 2014, 25, 337-341.	7.2	31
87	C-Terminal ERK D- (and F-Like) Domains Link the Na+/H+ Exchanger NHE1 to ERK2 Phosphorylation and Regulation via Scaffolding. Biophysical Journal, 2014, 106, 426a.	0.5	0
88	The Structure and Oligomericity of the Transmembrane Domain of Cytokine Receptors is Modulated by the Protein/Lipid Ratio. Biophysical Journal, 2014, 106, 21a.	0.5	0
89	Exploring the Minimally Frustrated Energy Landscape of Unfolded ACBP. Journal of Molecular Biology, 2014, 426, 722-734.	4.2	17
90	Single-Molecule Folding Mechanism of an EF-Hand Neuronal Calcium Sensor. Structure, 2013, 21, 1812-1821.	3.3	27

#	Article	lF	Citations
91	Strains of the soil fungus Mortierella show different degradation potentials for the phenylurea herbicide diuron. Biodegradation, 2013, 24, 765-774.	3.0	79
92	Solution properties of the archaeal CRISPR DNA repeat-binding homeodomain protein Cbp2. Nucleic Acids Research, 2013, 41, 3424-3435.	14.5	10
93	Gentamicin Binds to the Megalin Receptor as a Competitive Inhibitor Using the Common Ligand Binding Motif of Complement Type Repeats. Journal of Biological Chemistry, 2013, 288, 4424-4435.	3.4	47
94	New horizons for lipoprotein receptors: communication by \hat{l}^2 -propellers. Journal of Lipid Research, 2013, 54, 2763-2774.	4.2	13
95	The Transcriptional Repressor Domain of Gli3 Is Intrinsically Disordered. PLoS ONE, 2013, 8, e76972.	2.5	5
96	Direct interaction with the Na+/H+ exchanger NHE1 regulates ERK1/2 activity. FASEB Journal, 2013, 27, 730.1.	0.5	1
97	Î ² -Microseminoprotein Endows Post Coital Seminal Plasma with Potent Candidacidal Activity by a Calcium- and pH-Dependent Mechanism. PLoS Pathogens, 2012, 8, e1002625.	4.7	24
98	Structure and Dynamic Properties of Membrane Proteins using NMR., 2012, 2, 1491-1539.		5
99	A Highly Compliant Protein Native State with a Spontaneous-like Mechanical Unfolding Pathway. Journal of the American Chemical Society, 2012, 134, 17068-17075.	13.7	29
100	The C-Terminal Tail of Human Neuronal Calcium Sensor 1 Regulates the Conformational Stability of the Ca2+-Activated State. Journal of Molecular Biology, 2012, 417, 51-64.	4.2	31
101	Temperature-Induced Transitions in Disordered Proteins Probed by NMR Spectroscopy. Methods in Molecular Biology, 2012, 896, 233-247.	0.9	2
102	Order by disorder in plant signaling. Trends in Plant Science, 2012, 17, 625-632.	8.8	65
103	Analyzing Temperature-Induced Transitions in Disordered Proteins by NMR Spectroscopy and Secondary Chemical Shift Analyses. , 2012, 896, 249-256.		0
104	The WSXWS Motif in Cytokine Receptors IsÂa Molecular Switch Involved in Receptor Activation: Insight from Structures of the Prolactin Receptor. Structure, 2012, 20, 270-282.	3.3	73
105	Senescence-associated Barley NAC (NAM, ATAF1,2, CUC) Transcription Factor Interacts with Radical-induced Cell Death 1 through a Disordered Regulatory Domain. Journal of Biological Chemistry, 2011, 286, 35418-35429.	3.4	84
106	Streptococcal pyogenic exotoxin B (SpeB) boosts the contact system via binding of \hat{l}_{\pm} -1 antitrypsin. Biochemical Journal, 2011, 434, 123-132.	3.7	7
107	The Intracellular Distal Tail of the Na ⁺ /H ⁺ Exchanger NHE1 Is Intrinsically Disordered: Implications for NHE1 Trafficking. Biochemistry, 2011, 50, 3469-3480.	2.5	56
108	Development of prolactin receptor antagonists with reduced pHâ€dependence of receptor binding. Journal of Molecular Recognition, 2011, 24, 533-547.	2.1	6

#	Article	IF	Citations
109	Protein stability, flexibility and function. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 969-976.	2.3	178
110	Temperatureâ€dependent structural changes in intrinsically disordered proteins: Formation of αâ€'helices or loss of polyproline II?. Protein Science, 2010, 19, 1555-1564.	7.6	200
111	Regulation of ribonucleotide reductase by Spd1 involves multiple mechanisms. Genes and Development, 2010, 24, 1145-1159.	5.9	41
112	Crystal Structure of an Affinity-matured Prolactin Complexed to Its Dimerized Receptor Reveals the Topology of Hormone Binding Site 2. Journal of Biological Chemistry, 2010, 285, 8422-8433.	3.4	59
113	Functional aspects of protein flexibility. Cellular and Molecular Life Sciences, 2009, 66, 2231-2247.	5.4	207
114	Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp Environmental Pollution, 2009, 157, 2806-2812.	7.5	72
115	Structure of the Mature Streptococcal Cysteine Protease Exotoxin mSpeB in Its Active Dimeric Form. Journal of Molecular Biology, 2009, 393, 693-703.	4.2	15
116	Phosphate Selective Uranyl Photoâ€Affinity Cleavage of Proteins. Determination of Phosphorylation Sites. ChemBioChem, 2008, 9, 2377-2381.	2.6	11
117	The Intrinsically Disordered RNR Inhibitor Sml1 Is a Dynamic Dimer. Biochemistry, 2008, 47, 13428-13437.	2.5	53
118	Mechanism of the Ca2+-induced Enhancement of the Intrinsic Factor VIIa Activity. Journal of Biological Chemistry, 2008, 283, 25863-25870.	3.4	11
119	Acyl-CoA-binding protein (ACBP) localizes to the endoplasmic reticulum and Golgi in a ligand-dependent manner in mammalian cells. Biochemical Journal, 2008, 410, 463-472.	3.7	30
120	Structural and Thermodynamic Bases for the Design of Pure Prolactin Receptor Antagonists. Journal of Biological Chemistry, 2007, 282, 33118-33131.	3.4	66
121	Engineering the substrate and inhibitor specificities of human coagulation Factor VIIa. Biochemical Journal, 2007, 405, 429-438.	3.7	23
122	A loop of coagulation factor VIIa influencing macromolecular substrate specificity. FEBS Letters, 2007, 581, 71-76.	2.8	4
123	Structure–activity study of the antibacterial peptide fallaxin. Protein Science, 2007, 16, 1969-1976.	7.6	38
124	Acyl-CoA binding proteins; structural and functional conservation over 2000 MYA. Molecular and Cellular Biochemistry, 2007, 299, 55-65.	3.1	84
125	Binding Site Structure of One LRP–RAP Complex:Implications for a Common Ligand–Receptor Binding Motif. Journal of Molecular Biology, 2006, 362, 700-716.	4.2	62
126	Structure of the human beta-ketoacyl [ACP] synthase from the mitochondrial type II fatty acid synthase. Protein Science, 2006, 16, 261-272.	7.6	56

#	Article	IF	CITATIONS
127	Different secondary structure elements as scaffolds for protein folding transition states of two homologous four-helix bundles. Proteins: Structure, Function and Bioinformatics, 2005, 59, 80-90.	2.6	51
128	Hydroxylation of the Herbicide Isoproturon by Fungi Isolated from Agricultural Soil. Applied and Environmental Microbiology, 2005, 71, 7927-7932.	3.1	46
129	Reversible Dimerization of Acid-Denatured ACBP Controlled by Helix A4. Biochemistry, 2005, 44, 1375-1384.	2.5	17
130	Solution Structure of Human Prolactin. Journal of Molecular Biology, 2005, 351, 810-823.	4.2	105
131	Protein folding: Defining a "standard―set of experimental conditions and a preliminary kinetic data set of two-state proteins. Protein Science, 2005, 14, 602-616.	7.6	207
132	Structure and Biochemical Function of a Prototypical Arabidopsis U-box Domain. Journal of Biological Chemistry, 2004, 279, 40053-40061.	3.4	85
133	Early kinetic intermediate in the folding of acyl-CoA binding protein detected by fluorescence labeling and ultrarapid mixing. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9807-9812.	7.1	95
134	Fluorescently labelled bovine acyl-CoA-binding protein acting as an acyl-CoA sensor: interaction with CoA and acyl-CoA esters and its use in measuring free acyl-CoA esters and non-esterified fatty acids. Biochemical Journal, 2002, 365, 165-172.	3.7	22
135	Transient Intermediary States with High and Low Folding Probabilities in the Apparent Two-state Folding Equilibrium of ACBP at Low pH. Journal of Molecular Biology, 2002, 318, 805-814.	4.2	34
136	Transient Structure Formation in Unfolded Acyl-coenzyme A-binding Protein Observed by Site-directed Spin Labelling. Journal of Molecular Biology, 2002, 324, 349-357.	4.2	85
137	1H, 13C, and 15N assignments of un-myristoylated Ca2+-frequenin, a synaptic efficacy modulator. Journal of Biomolecular NMR, 2000, 16, 85-86.	2.8	7
138	Formation of hydrogen bonds precedes the rate-limiting formation of persistent structure in the folding of ACBP. Journal of Molecular Biology, 2000, 301, 1307-1314.	4.2	31
139	The formation of a native-like structure containing eight conserved hydrophobic residues is rate limiting in two-state protein folding of ACBP. Nature Structural Biology, 1999, 6, 594-601.	9.7	128
140	Acyl-coenzyme A binding protein (ACBP). Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1441, 150-161.	2.4	95
141	Conserved Residues and Their Role in the Structure, Function, and Stability of Acyl-Coenzyme A Binding Proteinâ€. Biochemistry, 1999, 38, 2386-2394.	2.5	82
142	Mapping the lifetimes of local opening events in a native state protein. Protein Science, 1998, 7, 2237-2248.	7.6	25
143	Hydrophobic Core Substitutions in Calbindin D9k: Effects on Ca2+Binding and Dissociationâ€. Biochemistry, 1998, 37, 8926-8937.	2.5	39
144	Barley lipid-transfer protein complexed with palmitoyl CoA: the structure reveals a hydrophobic binding site that can expand to fit both large and small lipid-like ligands. Structure, 1997, 5, 291-306.	3.3	134

#	Article	IF	CITATIONS
145	Thermodynamics of Ligand Binding to Acyl-Coenzyme A Binding Protein Studied by Titration Calorimetryâ€. Biochemistry, 1996, 35, 14118-14126.	2.5	140
146	Fast and One-step Folding of Closely and Distantly Related Homologous Proteins of a Four-helix Bundle Family. Journal of Molecular Biology, 1996, 256, 187-200.	4.2	107
147	Probing the Nature of Noncovalent Interactions by Mass Spectrometry. A Study of Proteinâ^'CoA Ligand Binding and Assembly. Journal of the American Chemical Society, 1996, 118, 8646-8653.	13.7	304
148	Folding of a four-helix bundle: studies of acyl-coenzyme A binding protein. Biochemistry, 1995, 34, 7217-7224.	2.5	169
149	Local Perturbations by Ligand Binding of Hydrogen Deuterium Exchange Kinetics in a Four-helix Bundle Protein, Acyl Coenzyme A Binding Protein (ACBP). Journal of Molecular Biology, 1995, 250, 695-706.	4.2	47
150	Three-dimensional Structure of the Complex between Acyl-Coenzyme A Binding Protein and Palmitoyl-Coenzyme A. Journal of Molecular Biology, 1993, 230, 1260-1277.	4.2	164