Angela M Crawley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5962577/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	BATL: Bayesian annotations for targeted lipidomics. Bioinformatics, 2022, 38, 1593-1599.	1.8	3
2	Selective killing of human M1 macrophages by Smac mimetics alone and M2 macrophages by Smac mimetics and caspase inhibition. Journal of Leukocyte Biology, 2021, 110, 693-710.	1.5	7
3	The 9th Canadian Symposium on Hepatitis C Virus: Advances in HCV research and treatment towards elimination. Canadian Liver Journal, 2021, 4, 59-71.	0.3	2
4	Symptoms, Pulmonary Function, and Functional Capacity Four Months after COVID-19. Annals of the American Thoracic Society, 2021, 18, 1912-1917.	1.5	53
5	TLR-4 Agonist Induces IFN-γ Production Selectively in Proinflammatory Human M1 Macrophages through the PI3K-mTOR– and JNK-MAPK–Activated p70S6K Pathway. Journal of Immunology, 2021, 207, 2310-2324.	0.4	15
6	Relative Ratios of Human Seasonal Coronavirus Antibodies Predict the Efficiency of Cross-Neutralization of SARS-CoV-2 Spike Binding to ACE2. EBioMedicine, 2021, 74, 103700.	2.7	37
7	Expression of Inhibitory Receptors on T and NK Cells Defines Immunological Phenotypes of HCV Patients with Advanced Liver Fibrosis. IScience, 2020, 23, 101513.	1.9	11
8	ILâ€7 induces sCD127 release and mCD127 downregulation in human CD8 ⁺ T cells by distinct yet overlapping mechanisms, both of which are impaired in HIV infection. European Journal of Immunology, 2020, 50, 1537-1549.	1.6	5
9	In Vitro Hepatitis C Virus Infection and Hepatic Choline Metabolism. Viruses, 2020, 12, 108.	1.5	23
10	Evaluation of Safety and Effectiveness of Elvitegravir/Cobicistat/Emtricitabine/Tenofovir Alafenamide Switch Followed by Ledipasvir/Sofosbuvir HCV Therapy in HIV–HCV Coinfection. Open Forum Infectious Diseases, 2019, 6, .	0.4	5
11	Direct-Acting Antiviral Treatment of HCV Infection Does Not Resolve the Dysfunction of Circulating CD8+ T-Cells in Advanced Liver Disease. Frontiers in Immunology, 2019, 10, 1926.	2.2	41
12	Chronic Hepatitis C Virus Infection Impairs M1 Macrophage Differentiation and Contributes to CD8+ T-Cell Dysfunction. Cells, 2019, 8, 374.	1.8	23
13	Hepatitis C Direct Acting Antivirals and Ribavirin Modify Lipid but not Glucose Parameters. Cells, 2019, 8, 252.	1.8	33
14	Hepatitis C virus core protein reduces <scp>CD</scp> 8 ⁺ T ell proliferation, perforin production and degranulation but increases <scp>STAT</scp> 5 activation. Immunology, 2018, 154, 156-165.	2.0	14
15	Increased soluble IL-7 receptor concentrations associate with improved IL-7 therapy outcomes in SIV-infected ART-treated Rhesus macaques. PLoS ONE, 2017, 12, e0188427.	1.1	12
16	Influence of female sex on hepatitis C virus infection progression and treatment outcomes. European Journal of Gastroenterology and Hepatology, 2016, 28, 405-411.	0.8	12
17	Generalized Liver- and Blood-Derived CD8+ T-Cell Impairment in Response to Cytokines in Chronic Hepatitis C Virus Infection. PLoS ONE, 2016, 11, e0157055.	1.1	15
18	Complexed soluble IL-7 receptor α and IL-7 increase IL-7-mediated proliferation and viability of CD8+ T-cells in vitro. Cellular Immunology, 2015, 293, 122-125.	1.4	17

ANGELA M CRAWLEY

#	ARTICLE	IF	CITATIONS
19	Jak/STAT and PI3K signaling pathways have both common and distinct roles in IL-7-mediated activities in human CD8+ T cells. Journal of Leukocyte Biology, 2013, 95, 117-127.	1.5	23
20	In Vitro HIV Type 1 Infection Indirectly Alters CD127 Expression on CD8+ T Cells. AIDS Research and Human Retroviruses, 2012, 28, 295-298.	0.5	2
21	The influence of HIV on CD127 expression and its potential implications for IL-7 therapy. Seminars in Immunology, 2012, 24, 231-240.	2.7	31
22	Expression of γ hain cytokine receptors on CD8 + T cells in HIV infection with a focus on ILâ€7Rα (CD127). Immunology and Cell Biology, 2012, 90, 379-387.	1.0	4
23	Interleukinâ€4 downregulates CD127 expression and activity on human thymocytes and mature CD8 + T cells. European Journal of Immunology, 2010, 40, 1396-1407.	1.6	17
24	Interleukinâ€7 enhances memory CD8 ⁺ Tâ€cell recall responses in health but its activity is impaired in human immunodeficiency virus infection. Immunology, 2010, 131, 525-536.	2.0	18
25	Soluble IL-7Rα (sCD127) Inhibits IL-7 Activity and Is Increased in HIV Infection. Journal of Immunology, 2010, 184, 4679-4687.	0.4	84
26	IL-7-dependent STAT-5 activation and CD8+ T cell proliferation are impaired in HIV infection. Journal of Leukocyte Biology, 2010, 89, 499-506.	1.5	25
27	Development of a Quantitative Bead Capture Assay for Soluble IL-7 Receptor Alpha in Human Plasma. PLoS ONE, 2009, 4, e6690.	1.1	13
28	IL-2 receptor chain cytokines differentially regulate human CD8+CD127+ and CD8+CD127- T cell division and susceptibility to apoptosis. International Immunology, 2009, 21, 29-42.	1.8	15
29	IL-7 decreases IL-7 receptor (CD127) expression and induces the shedding of CD127 by human CD8+ T cells. International Immunology, 2007, 19, 1329-1339.	1.8	76
30	Genetic selection for high and low immune response in pigs: Effects on immunoglobulin isotype expression. Veterinary Immunology and Immunopathology, 2005, 108, 71-76.	0.5	37