
Derren J Heyes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5962284/publications.pdf Version: 2024-02-01

NEDDEN I HEVES

#	Article	IF	CITATIONS
1	A guide to timeâ€resolved structural analysis of lightâ€activated proteins. FEBS Journal, 2022, 289, 576-595.	2.2	25
2	Making molecules with photodecarboxylases: A great start or a false dawn?. Current Research in Chemical Biology, 2022, 2, 100017.	1.4	17
3	An unusual light-sensing function for coenzyme B12 in bacterial transcription regulator CarH. Methods in Enzymology, 2022, 668, 349-372.	0.4	1
4	How Photoactivation Triggers Protochlorophyllide Reduction: Computational Evidence of a Stepwise Hydride Transfer during Chlorophyll Biosynthesis. ACS Catalysis, 2022, 12, 4141-4148.	5.5	8
5	Advantages of brain penetrating inhibitors of kynurenine-3-monooxygenase for treatment of neurodegenerative diseases. Archives of Biochemistry and Biophysics, 2021, 697, 108702.	1.4	12
6	Dual role of the active site â€~lid' regions of protochlorophyllide oxidoreductase in photocatalysis and plant development. FEBS Journal, 2021, 288, 175-189.	2.2	15
7	Interplay between chromophore binding and domain assembly by the B ₁₂ -dependent photoreceptor protein, CarH. Chemical Science, 2021, 12, 8333-8341.	3.7	10
8	Photocatalysis as the â€~master switch' of photomorphogenesis in early plant development. Nature Plants, 2021, 7, 268-276.	4.7	22
9	A Noncanonical Tryptophan Analogue Reveals an Active Site Hydrogen Bond Controlling Ferryl Reactivity in a Heme Peroxidase. Jacs Au, 2021, 1, 913-918.	3.6	8
10	Design and fabrication of recombinant reflectin-based multilayer reflectors: bio-design engineering and photoisomerism induced wavelength modulation. Scientific Reports, 2021, 11, 14580.	1.6	7
11	Quantum Biology: An Update and Perspective. Quantum Reports, 2021, 3, 80-126.	0.6	74
12	Insights into the H ₂ O ₂ â€driven catalytic mechanism of fungal lytic polysaccharide monooxygenases. FEBS Journal, 2021, 288, 4115-4128.	2.2	47
13	Kinetic characterisation of Erv1, a key component for protein import and folding in yeast mitochondria. FEBS Journal, 2020, 287, 1220-1231.	2.2	10
14	Pressure and Temperature Effects on the Formation of Aminoacrylate Intermediates of Tyrosine Phenol-lyase Demonstrate Reaction Dynamics. ACS Catalysis, 2020, 10, 1692-1703.	5.5	6
15	Redox characterisation of Erv1, a key component for protein import and folding in yeast mitochondria. FEBS Journal, 2020, 287, 2281-2291.	2.2	4
16	Photocycle of Cyanobacteriochrome TePixJ. Biochemistry, 2020, 59, 2909-2915.	1.2	7
17	Ferulic Acid Decarboxylase Controls Oxidative Maturation of the Prenylated Flavin Mononucleotide Cofactor. ACS Chemical Biology, 2020, 15, 2466-2475.	1.6	13
18	Catalytic Mechanism of Aromatic Nitration by Cytochrome P450 TxtE: Involvement of a Ferric-Peroxynitrite Intermediate. Journal of the American Chemical Society, 2020, 142, 15764-15779.	6.6	55

DERREN J HEYES

#	Article	IF	CITATIONS
19	Photochemical Mechanism of Light-Driven Fatty Acid Photodecarboxylase. ACS Catalysis, 2020, 10, 6691-6696.	5.5	72
20	Low carbon strategies for sustainable bio-alkane gas production and renewable energy. Energy and Environmental Science, 2020, 13, 1818-1831.	15.6	77
21	Active Intermediates in Copper Nitrite Reductase Reactions Probed by a Cryotrappingâ€Electron Paramagnetic Resonance Approach. Angewandte Chemie, 2020, 132, 14040-14044.	1.6	4
22	Radical-based photoinactivation of fatty acid photodecarboxylases. Analytical Biochemistry, 2020, 600, 113749.	1.1	48
23	Ultrafast Vibrational Energy Transfer between Protein and Cofactor in a Flavoenzyme. Journal of Physical Chemistry B, 2020, 124, 5163-5168.	1.2	8
24	Rewiring the "Push-Pull―Catalytic Machinery of a Heme Enzyme Using an Expanded Genetic Code. ACS Catalysis, 2020, 10, 2735-2746.	5.5	25
25	Active Intermediates in Copper Nitrite Reductase Reactions Probed by a Cryotrappingâ€Electron Paramagnetic Resonance Approach. Angewandte Chemie - International Edition, 2020, 59, 13936-13940.	7.2	8
26	Protein Conformational Change Is Essential for Reductive Activation of Lytic Polysaccharide Monooxygenase by Cellobiose Dehydrogenase. ACS Catalysis, 2020, 10, 4842-4853.	5.5	18
27	A brain-permeable inhibitor of the neurodegenerative disease target kynurenine 3-monooxygenase prevents accumulation of neurotoxic metabolites. Communications Biology, 2019, 2, 271.	2.0	36
28	Unexpected Roles of a Tether Harboring a Tyrosine Gatekeeper Residue in Modular Nitrite Reductase Catalysis. ACS Catalysis, 2019, 9, 6087-6099.	5.5	17
29	Photochemical Spin Dynamics of the Vitamin B ₁₂ Derivative, Methylcobalamin. Journal of Physical Chemistry B, 2019, 123, 4663-4672.	1.2	9
30	Solvent-slaved protein motions accompany proton coupled electron transfer reactions catalysed by copper nitrite reductase. Chemical Communications, 2019, 55, 5863-5866.	2.2	13
31	Enzymatic Carboxylation of 2-Furoic Acid Yields 2,5-Furandicarboxylic Acid (FDCA). ACS Catalysis, 2019, 9, 2854-2865.	5.5	74
32	Structural basis for enzymatic photocatalysis in chlorophyll biosynthesis. Nature, 2019, 574, 722-725.	13.7	88
33	Light-induced structural changes in a full-length cyanobacterial phytochrome probed by time-resolved X-ray scattering. Communications Biology, 2019, 2, 1.	2.0	611
34	Pressurized CO ₂ as a carboxylating agent for the biocatalytic <i>ortho</i> -carboxylation of resorcinol. Green Chemistry, 2018, 20, 1754-1759.	4.6	23
35	Stepwise Hydride Transfer in a Biological System: Insights into the Reaction Mechanism of the Lightâ€Dependent Protochlorophyllide Oxidoreductase. Angewandte Chemie, 2018, 130, 2712-2716.	1.6	9
36	Stepwise Hydride Transfer in a Biological System: Insights into the Reaction Mechanism of the Lightâ€Dependent Protochlorophyllide Oxidoreductase. Angewandte Chemie - International Edition, 2018, 57, 2682-2686.	7.2	37

DERREN J HEYES

#	Article	IF	CITATIONS
37	Photochemical Mechanism of an Atypical Algal Phytochrome. ChemBioChem, 2018, 19, 1036-1043.	1.3	11
38	Direct Evidence of an Excited-State Triplet Species upon Photoactivation of the Chlorophyll Precursor Protochlorophyllide. Journal of Physical Chemistry Letters, 2017, 8, 1219-1223.	2.1	7
39	Excited-State Properties of Protochlorophyllide Analogues and Implications for Light-Driven Synthesis of Chlorophyll. Journal of Physical Chemistry B, 2017, 121, 1312-1320.	1.2	6
40	Engineering proximal vs. distal heme–NO coordination via dinitrosyl dynamics: implications for NO sensor design. Chemical Science, 2017, 8, 1986-1994.	3.7	13
41	Cross-Species Analysis of Protein Dynamics Associated with Hydride and Proton Transfer in the Catalytic Cycle of the Light-Driven Enzyme Protochlorophyllide Oxidoreductase. Biochemistry, 2016, 55, 903-913.	1.2	14
42	Isolation and characterisation of 13 pterosins and pterosides from bracken (Pteridium aquilinum (L.)) Tj ETQq0 0	0 <u>г</u> дат /О	verlock 10 Tf
43	Multiple active site residues are important for photochemical efficiency in the light-activated enzyme protochlorophyllide oxidoreductase (POR). Journal of Photochemistry and Photobiology B: Biology, 2016, 161, 236-243.	1.7	23
44	Light-driven biocatalytic reduction of α,Ĵ²-unsaturated compounds by ene reductases employing transition metal complexes as photosensitizers. Catalysis Science and Technology, 2016, 6, 169-177.	2.1	48
45	Catalytic Mechanism of Cofactor-Free Dioxygenases and How They Circumvent Spin-Forbidden Oxygenation of Their Substrates. Journal of the American Chemical Society, 2015, 137, 7474-7487.	6.6	70
46	Does the pressure dependence of kinetic isotope effects report usefully on dynamics in enzyme Hâ€ŧransfer reactions?. FEBS Journal, 2015, 282, 3243-3255.	2.2	8
47	Excitedâ€State Charge Separation in the Photochemical Mechanism of the Lightâ€Driven Enzyme Protochlorophyllide Oxidoreductase. Angewandte Chemie - International Edition, 2015, 54, 1512-1515.	7.2	38
48	Energy Landscapes and Catalysis in Nitric-oxide Synthase. Journal of Biological Chemistry, 2014, 289, 11725-11738.	1.6	25
49	The Photoinitiated Reaction Pathway of Full-length Cyanobacteriochrome Tlr0924 Monitored Over 12 Orders of Magnitude. Journal of Biological Chemistry, 2014, 289, 17747-17757.	1.6	18
50	Comprehensive Analysis of the Green-to-Blue Photoconversion of Full-Length Cyanobacteriochrome Tlr0924. Biophysical Journal, 2014, 107, 2195-2203.	0.2	15
51	Structural basis of kynurenine 3-monooxygenase inhibition. Nature, 2013, 496, 382-385.	13.7	124
52	Excited state dynamics and catalytic mechanism of the light-driven enzyme protochlorophyllide oxidoreductase. Physical Chemistry Chemical Physics, 2012, 14, 8818.	1.3	45

53	Mechanistic Reappraisal of Early Stage Photochemistry in the Light-Driven Enzyme Protochlorophyllide Oxidoreductase. PLoS ONE, 2012, 7, e45642.	1.1	14	
54	Ultrafast Red Light Activation of Synechocystis Phytochrome Cph1 Triggers Major Structural Change	1.1	22	

54 to Form the Pfr Signalling-Competent State. PLoS ONE, 2012, 7, e52418.

DERREN J HEYES

#	Article	IF	CITATIONS
55	A Twin-track Approach Has Optimized Proton and Hydride Transfer by Dynamically Coupled Tunneling during the Evolution of Protochlorophyllide Oxidoreductase. Journal of Biological Chemistry, 2011, 286, 11849-11854.	1.6	25
56	Mutagenesis Alters the Catalytic Mechanism of the Light-driven Enzyme Protochlorophyllide Oxidoreductase. Journal of Biological Chemistry, 2010, 285, 2113-2119.	1.6	28
57	Protochlorophyllide Excited-State Dynamics in Organic Solvents Studied by Time-Resolved Visible and Mid-Infrared Spectroscopy. Journal of Physical Chemistry B, 2010, 114, 4335-4344.	1.2	40
58	Structure-based Mechanism of CMP-2-keto-3-deoxymanno-octulonic Acid Synthetase. Journal of Biological Chemistry, 2009, 284, 35514-35523.	1.6	29
59	Cryogenic and Laser Photoexcitation Studies Identify Multiple Roles for Active Site Residues in the Light-driven Enzyme Protochlorophyllide Oxidoreductase. Journal of Biological Chemistry, 2009, 284, 18160-18166.	1.6	34
60	Nuclear Quantum Tunneling in the Light-activated Enzyme Protochlorophyllide Oxidoreductase. Journal of Biological Chemistry, 2009, 284, 3762-3767.	1.6	80
61	Solventâ€6laved Protein Motions Accompany Proton but Not Hydride Tunneling in Lightâ€Activated Protochlorophyllide Oxidoreductase. Angewandte Chemie - International Edition, 2009, 48, 3850-3853.	7.2	25
62	Internal electron transfer in multi-site redox enzymes is accessed by laser excitation of thiouredopyrene-3,6,8-trisulfonate (TUPS). Chemical Communications, 2009, , 1124.	2.2	11
63	Simultaneous Measurements of Solvent Dynamics and Functional Kinetics in a Light-Activated Enzyme. Biophysical Journal, 2009, 96, 1902-1910.	0.2	23
64	Conformational changes in the catalytic cycle of protochlorophyllide oxidoreductase: what lessons can be learnt from dihydrofolate reductase?. Biochemical Society Transactions, 2009, 37, 354-357.	1.6	8
65	Conformational changes in an ultrafast light-driven enzyme determine catalytic activity. Nature, 2008, 456, 1001-1004.	13.7	133
66	Conformational Events during Ternary Enzymeâ^'Substrate Complex Formation Are Rate Limiting in the Catalytic Cycle of the Light-Driven Enzyme Protochlorophyllide Oxidoreductase. Biochemistry, 2008, 47, 10991-10998.	1.2	32
67	Laser Excitation Studies of the Product Release Steps in the Catalytic Cycle of the Light-driven Enzyme, Protochlorophyllide Oxidoreductase. Journal of Biological Chemistry, 2007, 282, 32015-32020.	1.6	25
68	Spectroscopic and kinetic characterization of the light-dependent enzyme protochlorophyllide oxidoreductase (POR) using monovinyl and divinyl substrates. Biochemical Journal, 2006, 394, 243-248.	1.7	21
69	The First Catalytic Step of the Light-driven Enzyme Protochlorophyllide Oxidoreductase Proceeds via a Charge Transfer Complex. Journal of Biological Chemistry, 2006, 281, 26847-26853.	1.6	57
70	Making light work of enzyme catalysis: protochlorophyllide oxidoreductase. Trends in Biochemical Sciences, 2005, 30, 642-649.	3.7	166
71	Identification and Characterization of the Product Release Steps within the Catalytic Cycle of Protochlorophyllide Oxidoreductase. Biochemistry, 2004, 43, 8265-8271.	1.2	49
72	Ultrafast enzymatic reaction dynamics in protochlorophyllide oxidoreductase. Nature Structural and Molecular Biology, 2003, 10, 491-492.	3.6	76

#	Article	IF	CITATIONS
73	Protochlorophyllide Oxidoreductase: "Dark―Reactions of a Light-Driven Enzymeâ€. Biochemistry, 2003, 42, 523-528.	1.2	64
74	Enzymology below 200 K: The kinetics and thermodynamics of the photochemistry catalyzed by protochlorophyllide oxidoreductase. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11145-11150.	3.3	93
75	Spectroscopic characterisation of the substrate binding properties of NADPH:protochlorophyllide oxidoreductase (POR). Biochemical Society Transactions, 2002, 30, A74-A74.	1.6	0