Martin Gysel

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5962268/martin-gysel-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

172	10,253	53	99
papers	citations	h-index	g-index
231 ext. papers	11,823 ext. citations	6.2 avg, IF	5.56 L-index

#	Paper	IF	Citations
172	Modelling the gasparticle partitioning and water uptake of isoprene-derived secondary organic aerosol at high and low relative humidity. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 215-244	6.8	2
171	Retrieval of aerosol properties from in situ, multi-angle light scattering measurements using invertible neural networks. <i>Journal of Aerosol Science</i> , 2022 , 163, 105977	4.3	О
170	Seasonality of the particle number concentration and size distribution: a global analysis retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 17185-17223	6.8	7
169	Sources and nature of ice-nucleating particles in the free troposphere at Jungfraujoch in winter 2017. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 16925-16953	6.8	2
168	Measurement report: Comparison of airborne, in situ measured, lidar-based, and modeled aerosol optical properties in the central European background Identifying sources of deviations. Atmospheric Chemistry and Physics, 2021, 21, 16745-16773	6.8	1
167	Comparison of co-located refractory black carbon (rBC) and elemental carbon (EC) mass concentration measurements during field campaigns at several European sites. <i>Atmospheric Measurement Techniques</i> , 2021 , 14, 1379-1403	4	6
166	Low-Volatility Vapors and New Particle Formation Over the Southern Ocean During the Antarctic Circumnavigation Expedition. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2021JD0351	2 6 4	3
165	Long-term trends of black carbon and particle number concentration in the lower free troposphere in Central Europe. <i>Environmental Sciences Europe</i> , 2021 , 33,	5	3
164	Brown Carbon in Primary and Aged Coal Combustion Emission. <i>Environmental Science & Emp; Technology</i> , 2021 , 55, 5701-5710	10.3	9
163	Sources, Occurrence and Characteristics of Fluorescent Biological Aerosol Particles Measured Over the Pristine Southern Ocean. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2021JD03481	1 ·4	2
162	The SALTENA experiment: Comprehensive observations of aerosol sources, formation and processes in the South American Andes. <i>Bulletin of the American Meteorological Society</i> , 2021 , 1-46	6.1	1
161	Elucidating local pollution and site representativeness at the Jungfraujoch, Switzerland through parallel aerosol measurements at an adjacent mountain ridge. <i>Environmental Research Communications</i> , 2021 , 3, 021001	3.1	3
160	Detailed characterization of the CAPS single-scattering albedo monitor (CAPS PMssa) as a field-deployable instrument for measuring aerosol light absorption with the extinction-minus-scattering method. <i>Atmospheric Measurement Techniques</i> , 2021 , 14, 819-851	4	8
159	Source-specific light absorption by carbonaceous components in the complex aerosol matrix from yearly filter-based measurements. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 12809-12833	6.8	4
158	Coated soot particles with tunable, well-controlled properties generated in the laboratory with a miniCAST BC and a micro smog chamber. <i>Journal of Aerosol Science</i> , 2021 , 157, 105820	4.3	5
157	Variability in the mass absorption cross section of black carbon (BC) aerosols is driven by BC internal mixing state at a central European background site (Melpitz, Germany) in winter. Atmospheric Chemistry and Physics, 2021, 21, 635-655	6.8	6
156	Assessment of real-time bioaerosol particle counters using reference chamber experiments. <i>Atmospheric Measurement Techniques</i> , 2021 , 14, 7693-7706	4	2

155	The contribution of Saharan dust to the ice-nucleating particle concentrations at the High Altitude Station Jungfraujoch (3580 m a.s.l.), Switzerland. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 18029-18	6-8 053	1
154	The value of remote marine aerosol measurements for constraining radiative forcing uncertainty. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 10063-10072	6.8	11
153	Multidecadal trend analysis of in situ aerosol radiative properties around the world. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 8867-8908	6.8	30
152	Using global reanalysis data to quantify and correct airflow distortion bias in shipborne wind speed measurements. <i>Atmospheric Measurement Techniques</i> , 2020 , 13, 3487-3506	4	3
151	A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories. <i>Atmospheric Measurement Techniques</i> , 2020 , 13, 4353-4392	4	32
150	Black Carbon Aerosols in the Lower Free Troposphere are Heavily Coated in Summer but Largely Uncoated in Winter at Jungfraujoch in the Swiss Alps. <i>Geophysical Research Letters</i> , 2020 , 47, e2020GL08	8 8 811	4
149	Cloud droplet activation properties and scavenged fraction of black carbon in liquid-phase clouds at the high-alpine research station Jungfraujoch (3580 m a.s.l.). <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 3833-3855	6.8	15
148	Field evaluation of a Portable Fine Particle Concentrator (PFPC) for ice nucleating particle measurements. <i>Aerosol Science and Technology</i> , 2019 , 53, 1067-1078	3.4	8
147	Droplet activation behaviour of atmospheric black carbon particles in fog as a function of their size and mixing state. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 2183-2207	6.8	13
146	Overview of the Antarctic Circumnavigation Expedition: Study of Preindustrial-like Aerosols and Their Climate Effects (ACE-SPACE). <i>Bulletin of the American Meteorological Society</i> , 2019 , 100, 2260-228.	3 6.1	35
145	Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 8591-8617	6.8	31
144	Infrared-absorbing carbonaceous tar can dominate light absorption by marine-engine exhaust. <i>Npj Climate and Atmospheric Science</i> , 2019 , 2,	8	44
143	Effect of Large-scale Biomass Burning on Aerosol Optical Properties at the GAW Regional Station Pha Din, Vietnam. <i>Aerosol and Air Quality Research</i> , 2019 , 19, 1172-1187	4.6	9
142	Detection of tar brown carbon with a single particle soot photometer (SP2). <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 15673-15690	6.8	13
141	Trace Metals in Soot and PM from Heavy-Fuel-Oil Combustion in a Marine Engine. <i>Environmental Science & Environmental </i>	10.3	69
140	Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 2853-2881	6.8	62
139	Low number concentration of ice nucleating particles in an aged smoke plume. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2018 , 144, 1991-1994	6.4	2
138	Effects of mixing state on optical and radiative properties of black carbon in the European Arctic 2018 ,		1

137	AlEuropean aerosol phenomenology lb: scattering properties of atmospheric aerosol particles from 28 ACTRIS sites. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 7877-7911	6.8	46
136	Production of particulate brown carbon during atmospheric aging of residential wood-burning emissions. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 17843-17861	6.8	46
135	Production of particulate brown carbon during atmospheric aging of wood-burning emissions 2018,		3
134	Aerosol absorption profiling from the synergy of lidar and sun-photometry: the ACTRIS-2 campaigns in Germany, Greece and Cyprus. <i>EPJ Web of Conferences</i> , 2018 , 176, 08005	0.3	4
133	Effects of mixing state on optical and radiative properties of black carbon in the European Arctic. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 14037-14057	6.8	40
132	Brown and Black Carbon Emitted by a Marine Engine Operated on Heavy Fuel Oil and Distillate Fuels: Optical Properties, Size Distributions, and Emission Factors. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 6175-6195	4.4	38
131	Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition. <i>Scientific Data</i> , 2017 , 4, 170003	8.2	27
130	A European aerosol phenomenology-6: Scattering properties of atmospheric aerosol particles from 28 ACTRIS sites 2017 ,		1
129	Chemical composition and source analysis of carbonaceous aerosol particles at a mountaintop site in central Sweden. <i>Tellus, Series B: Chemical and Physical Meteorology,</i> 2017 , 69, 1353387	3.3	5
128	Revising the hygroscopicity of inorganic sea salt particles. <i>Nature Communications</i> , 2017 , 8, 15883	17.4	116
127	Evaluation of the absorption ligstrlin exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 4229-4249	6.8	171
126	Contribution of new particle formation to the total aerosol concentration at the high-altitude site Jungfraujoch (3580[m[asl, Switzerland). <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 11,6	59 ²² 11,	7 14
125	Vertical profiling of aerosol hygroscopic properties in the planetary boundary layer during the PEGASOS campaigns. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 7295-7315	6.8	11
124	Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 1693-1712	6.8	35
123	Chemical and physical influences on aerosol activation in liquid clouds: a study based on observations from the Jungfraujoch, Switzerland. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 4043-40	6 ^{6.8}	10
122	Studying the vertical aerosol extinction coefficient by comparing in situ airborne data and elastic backscatter lidar. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 4539-4554	6.8	22
121	Ice residual properties in mixed-phase clouds at the high-alpine Jungfraujoch site. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 12343-12362	4.4	19
120	A Review of More than 20 Years of Aerosol Observation at the High Altitude Research Station Jungfraujoch, Switzerland (3580 m asl). <i>Aerosol and Air Quality Research</i> , 2016 , 16, 764-788	4.6	49

(2014-2016)

119	Aethalometer based source apportionment using radiocarbon measurements of ambient aerosol 2016 ,		6
118	The role of low-volatility organic compounds in initial particle growth in the atmosphere. <i>Nature</i> , 2016 , 533, 527-31	50.4	388
117	New particle formation in the free troposphere: A question of chemistry and timing. <i>Science</i> , 2016 , 352, 1109-12	33.3	264
116	A European aerosol phenomenology-5: Climatology of black carbon optical properties at 9 regional background sites across Europe. <i>Atmospheric Environment</i> , 2016 , 145, 346-364	5.3	94
115	The white-light humidified optical particle spectrometer (WHOPS) has novel airborne system to characterize aerosol hygroscopicity. <i>Atmospheric Measurement Techniques</i> , 2015 , 8, 921-939	4	13
114	Fast and precise measurement in the sub-20 nm size range using a Scanning Mobility Particle Sizer. Journal of Aerosol Science, 2015 , 87, 75-87	4.3	18
113	Analysis of long-term aerosol size distribution data from Jungfraujoch with emphasis on free tropospheric conditions, cloud influence, and air mass transport. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 9459-9480	4.4	58
112	Fourteen months of on-line measurements of the non-refractory submicron aerosol at the Jungfraujoch (3580 m a.s.l.) Ethemical composition, origins and organic aerosol sources. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 11373-11398	6.8	45
111	A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 12211-12229	6.8	35
110	The Ice Selective Inlet: a novel technique for exclusive extraction of pristine ice crystals in mixed-phase clouds. <i>Atmospheric Measurement Techniques</i> , 2015 , 8, 3087-3106	4	16
109	Predicting hygroscopic growth using single particle chemical composition estimates. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 9567-9577	4.4	15
108	Size-dependent particle activation properties in fog during the ParisFog 2012/13 field campaign. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 10517-10533	6.8	36
107	Investigation of the effective peak supersaturation for liquid-phase clouds at the high-alpine site Jungfraujoch, Switzerland (3580 m a.s.l.). <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 1123-1139	6.8	39
106	Mass spectrometry of refractory black carbon particles from six sources: carbon-cluster and oxygenated ions. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 2591-2603	6.8	51
105	The Pagami Creek smoke plume after long-range transport to the upper troposphere over Europe I aerosol properties and black carbon mixing state. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 6111-61	3 6.8	90
104	Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khumbu, Nepal and estimated radiative forcings. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 8089-8103	6.8	120
103	Optimized method for black carbon analysis in ice and snow using the Single Particle Soot Photometer. <i>Atmospheric Measurement Techniques</i> , 2014 , 7, 2667-2681	4	53
102	The Ice Selective Inlet: a novel technique for exclusive extraction of pristine ice crystals in mixed-phase clouds 2014 ,		3

101	The white-light humidified optical particle spectrometer (WHOPS) (a novel airborne system to characterize aerosol hygroscopicity 2014 ,		3
100	Optimized method for black carbon analysis in ice and snow using the Single Particle Soot Photometer 2014 ,		9
99	Hygroscopic properties of fresh and aged wood burning particles. <i>Journal of Aerosol Science</i> , 2013 , 56, 15-29	4.3	66
98	CCN activity and volatility of Etaryophyllene secondary organic aerosol. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 2283-2297	6.8	23
97	Evolution of particle composition in CLOUD nucleation experiments. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 5587-5600	6.8	25
96	Black carbon physical properties and mixing state in the European megacity Paris. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 5831-5856	6.8	138
95	Hygroscopic mixing state of urban aerosol derived from size-resolved cloud condensation nuclei measurements during the MEGAPOLI campaign in Paris. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 6431-6446	6.8	35
94	Technical Note: The single particle soot photometer fails to reliably detect PALAS soot nanoparticles. <i>Atmospheric Measurement Techniques</i> , 2012 , 5, 3099-3107	4	37
93	Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. <i>Atmospheric Measurement Techniques</i> , 2012 , 5, 657-685	4	531
92	Sensitivity of the Single Particle Soot Photometer to different black carbon types 2012 ,		5
91	Sensitivity of the Single Particle Soot Photometer to different black carbon types. <i>Atmospheric Measurement Techniques</i> , 2012 , 5, 1031-1043	4	154
90	Soot reference materials for instrument calibration and intercomparisons: a workshop summary with recommendations. <i>Atmospheric Measurement Techniques</i> , 2012 , 5, 1869-1887	4	162
89	Single Particle Soot Photometer intercomparison at the AIDA chamber 2012 ,		8
88	Single Particle Soot Photometer intercomparison at the AIDA chamber. <i>Atmospheric Measurement Techniques</i> , 2012 , 5, 3077-3097	4	125
87	Soot Reference Materials for instrument calibration and intercomparisons: a workshop summary with recommendations 2012 ,		8
86	Technical Note: The single particle soot photometer fails to detect PALAS soot nanoparticles 2012,		2
85	Recent increase in black carbon concentrations from a Mt. Everest ice core spanning 1860 2 000 AD. <i>Geophysical Research Letters</i> , 2011 , 38, n/a-n/a	4.9	157
84	A 17 month climatology of the cloud condensation nuclei number concentration at the high alpine site Jungfraujoch. <i>Journal of Geophysical Research</i> , 2011 , 116,		56

(2009-2011)

83	Relating hygroscopicity and composition of organic aerosol particulate matter. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 1155-1165	6.8	268
82	Ground-based and airborne in-situ measurements of the EyjafjallajRull volcanic aerosol plume in Switzerland in spring 2010. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 10011-10030	6.8	75
81	Volatility and hygroscopicity of aging secondary organic aerosol in a smog chamber. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 11477-11496	6.8	100
80	Relating cloud condensation nuclei activity and oxidation level of pinene secondary organic aerosols. <i>Journal of Geophysical Research</i> , 2011 , 116, n/a-n/a		51
79	Changes of hygroscopicity and morphology during ageing of diesel soot. <i>Environmental Research Letters</i> , 2011 , 6, 034026	6.2	121
78	Effective density of Aquadag and fullerene soot black carbon reference materials used for SP2 calibration. <i>Atmospheric Measurement Techniques</i> , 2011 , 4, 2851-2858	4	128
77	Particle mobility size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions 2010 ,		23
76	Subarctic atmospheric aerosol composition: 3. Measured and modeled properties of cloud condensation nuclei. <i>Journal of Geophysical Research</i> , 2010 , 115,		67
75	Impact of aftertreatment devices on primary emissions and secondary organic aerosol formation potential from in-use diesel vehicles: results from smog chamber experiments. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 11545-11563	6.8	152
74	EUCAARI ion spectrometer measurements at 12 European sites lanalysis of new particle formation events. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 7907-7927	6.8	204
73	Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 2319-2333	6.8	74
72	Widening the gap between measurement and modelling of secondary organic aerosol properties?. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 2577-2593	6.8	54
71	Effects of relative humidity on aerosol light scattering in the Arctic. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 3875-3890	6.8	102
70	Single particle characterization of black carbon aerosols at a tropospheric alpine site in Switzerland. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 7389-7407	6.8	89
69	Measured and modelled cloud condensation nuclei number concentration at the high alpine site Jungfraujoch. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 7891-7906	6.8	80
68	13-month climatology of the aerosol hygroscopicity at the free tropospheric site Jungfraujoch (3580 m a.s.l.). <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 10717-10732	6.8	50
67	Intercomparison study of six HTDMAs: results and recommendations. <i>Atmospheric Measurement Techniques</i> , 2009 , 2, 363-378	4	104
66	Inversion of tandem differential mobility analyser (TDMA) measurements. <i>Journal of Aerosol Science</i> , 2009 , 40, 134-151	4.3	221

65	Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 7804-9	3.6	90
64	Influence of gas-to-particle partitioning on the hygroscopic and droplet activation behaviour of alpha-pinene secondary organic aerosol. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 8091-7	3.6	53
63	Subarctic atmospheric aerosol composition: 2. Hygroscopic growth properties. <i>Journal of Geophysical Research</i> , 2009 , 114,		31
62	Analysis of the hygroscopic and volatile properties of ammonium sulphate seeded and unseeded SOA particles. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 721-732	6.8	97
61	Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments review. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2008 , 60, 432-469	3.3	333
60	A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength Aethalometer. <i>Atmospheric Environment</i> , 2008 , 42, 101-112	5.3	259
59	Cloud forming potential of secondary organic aerosol under near atmospheric conditions. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	131
58	In situ determination of atmospheric aerosol composition as a function of hygroscopic growth. <i>Journal of Geophysical Research</i> , 2008 , 113,		27
57	The influence of small aerosol particles on the properties of water and ice clouds. <i>Faraday Discussions</i> , 2008 , 137, 205-22; discussion 297-318	3.6	40
56	Clouds and aerosols in Puerto Rico 🖟 new evaluation. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 1293	-1 6.8 9	56
55	A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 5589-5601	6.8	126
54	Hygroscopicity of the submicrometer aerosol at the high-alpine site Jungfraujoch, 3580 m a.s.l., Switzerland. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 5715-5729	6.8	84
53	. Tellus, Series B: Chemical and Physical Meteorology, 2008 , 60,	3.3	45
52	Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 6131-6144	6.8	206
51	Hygroscopic growth and water uptake kinetics of two-phase aerosol particles consisting of ammonium sulfate, adipic and humic acid mixtures. <i>Journal of Aerosol Science</i> , 2007 , 38, 157-171	4.3	172
50	Closure Between Chemical Composition and Hygroscopic Growth of Aerosol Particles During TORCH2 2007 , 731-735		1
49	The effect of physical and chemical aerosol properties on warm cloud droplet activation. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 2593-2649	6.8	571
48	A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 5279-5293	6.8	202

47	Seasonal and diurnal characteristics of water soluble inorganic compounds in the gas and aerosol phase in the Zurich area. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 1895-1904	6.8	32
46	Secondary organic aerosols from anthropogenic and biogenic precursors. <i>Faraday Discussions</i> , 2005 , 130, 265-78; discussion 363-86, 519-24	3.6	218
45	A modified hygroscopic tandem DMA and a data retrieval method based on optimal estimation. <i>Journal of Aerosol Science</i> , 2005 , 36, 846-865	4.3	58
44	Particle emissions from aircraft engines a survey of the European project PartEmis. <i>Meteorologische Zeitschrift</i> , 2005 , 14, 465-476	3.1	31
43	On the effects of organic matter and sulphur-containing compounds on the CCN activation of combustion particles. <i>Atmospheric Chemistry and Physics</i> , 2005 , 5, 3187-3203	6.8	66
42	Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. <i>Atmospheric Environment</i> , 2005 , 39, 637-651	5.3	469
41	Properties of jet engine combustion particles during the PartEmis experiment: Particle size spectra (d > 15 nm) and volatility. <i>Geophysical Research Letters</i> , 2004 , 31,	4.9	3
40	Hygroscopic properties of water-soluble matter and humic-like organics in atmospheric fine aerosol. <i>Atmospheric Chemistry and Physics</i> , 2004 , 4, 35-50	6.8	212
39	Hygroscopic properties of water-soluble matter and humic-like organics in atmospheric fine aerosol 2003 ,		2
38	Properties of jet engine combustion particles during the PartEmis experiment: Hygroscopicity at subsaturated conditions. <i>Geophysical Research Letters</i> , 2003 , 30,	4.9	48
37	Properties of jet engine combustion particles during the PartEmis experiment: Microphysics and Chemistry. <i>Geophysical Research Letters</i> , 2003 , 30,	4.9	35
36	Properties of jet engine combustion particles during the PartEmis experiment. Hygroscopic growth at supersaturated conditions. <i>Geophysical Research Letters</i> , 2003 , 30,	4.9	33
35	Coating of soot and (NH4)2SO4 particles by ozonolysis products of pinene. <i>Journal of Aerosol Science</i> , 2003 , 34, 1297-1321	4.3	161
34	Hygroscopicity of aerosol particles at low temperatures. 2. Theoretical and experimental hygroscopic properties of laboratory generated aerosols. <i>Environmental Science & amp; Technology</i> , 2002 , 36, 63-8	10.3	182
33	Hygroscopicity of aerosol particles at low temperatures. 1. New low-temperature H-TDMA instrument: setup and first applications. <i>Environmental Science & Environmental Scienc</i>	10.3	112
32	HYGROSCOPICITY OF AEROSOL PARTICLES AT LOW TEMPERATURES. <i>Journal of Aerosol Science</i> , 2001 , 32, 977-978	4.3	4
31	Multidecadal trend analysis of aerosol radiative properties at a global scale		4
30	Variability in the mass absorption cross-section of black carbon (BC) aerosols is driven by BC internal mixing state at a central European background site (Melpitz, Germany) in winter		2

29	13-month climatology of the aerosol hygroscopicity at the free tropospheric site Jungfraujoch (3580 m a.s.l.)	1
28	Relating hygroscopicity and composition of organic aerosol particulate matter	4
27	Effects of relative humidity on aerosol light scattering in the Arctic	3
26	Single particle characterization of black carbon aerosols at a tropospheric alpine site in Switzerland	2
25	Measured and modelled cloud condensation nuclei concentration at the high alpine site Jungfraujoch	3
24	Ground-based and airborne in-situ measurements of the EyjafjallajRull volcanic aerosol plume in Switzerland in spring 2010	7
23	Volatility and hygroscopicity of aging secondary organic aerosol in a smog chamber	6
22	Evolution of particle composition in CLOUD nucleation experiments	1
21	Hygroscopic mixing state of urban aerosol derived from size-resolved cloud condensation nuclei measurements during the MEGAPOLI campaign in Paris	1
20	The Pagami Creek smoke plume after long-range transport to the upper troposphere over Europe [] aerosol properties and black carbon mixing state	2
19	Size-resolved and integral measurements of cloud condensation nuclei (CCN) at the high-alpine site Jungfrau	jo ç h
18	Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khumbu, Nepal and estimated radiative forcings	8
17	Size-dependent particle activation properties in fog during the ParisFog 2012/13 field campaign	2
16	Chemical and physical influences on aerosol activation in liquid clouds: an empirical study based on observations from the Jungfraujoch, Switzerland	1
15	Vertical profiling of aerosol hygroscopic properties in the planetary boundary layer during the PEGASOS campaigns	4
14	Closure between measured and modelled particle hygroscopic growth during TORCH2 implies ammonium nitrate artefact in the HTDMA measurements	4
13	Clouds and aerosols in Puerto Rico 🖟 new evaluation	2
12	Hygroscopicity of the submicrometer aerosol at the high-alpine site Jungfraujoch, 3580 m a.s.l., Switzerland	5

LIST OF PUBLICATIONS

11	A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles		1
10	Analysis of the hygroscopic and volatile properties of ammonium sulphate seeded and un-seeded SOA particles		4
9	Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch		2
8	Comparison of colocated rBC and EC mass concentration measurements during field campaigns at several European sites		3
7	Intercomparison study of six HTDMAs: results and general recommendations for HTDMA operation		6
6	A first evaluation of multiple automatic pollen monitors run in parallel. <i>Aerobiologia</i> ,1 2.4	1	3
5	A global analysis of climate-relevant aerosol properties retrieved from the network of GAW near-surface observatories		2
4	Black carbon physical properties and mixing state in the European megacity Paris		1
3	Investigation of the effective peak supersaturation for liquid-phase clouds at the high-alpine site Jungfraujoch, Switzerland (3580 m a.s.l.)		2
2	Optical and morphological properties of soot particles generated by the miniCAST 5201 BC generator. <i>Aerosol Science and Technology</i> ,1-25	1	4
1	Sea State and Boundary Layer Stability Limit Sea Spray Aerosol Lifetime over the Southern Ocean		2