
Gustavo A Gonzalez-Aguilar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5961892/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Role of Dietary Fiber in the Bioaccessibility and Bioavailability of Fruit and Vegetable Antioxidants. Journal of Food Science, 2011, 76, R6-R15.	1.5	504
2	Cyanidin-3-O-glucoside: Physical-Chemistry, Foodomics and Health Effects. Molecules, 2016, 21, 1264.	1.7	196
3	Effect of maturity stage on the content of fatty acids and antioxidant activity of â€~Hass' avocado. Food Research International, 2011, 44, 1231-1237.	2.9	172
4	Antioxidant Interactions between Major Phenolic Compounds Found in â€~Ataulfo' Mango Pulp: Chlorogenic, Gallic, Protocatechuic and Vanillic Acids. Molecules, 2012, 17, 12657-12664.	1.7	150
5	Gastrointestinal interactions, absorption, splanchnic metabolism and pharmacokinetics of orally ingested phenolic compounds. Food and Function, 2017, 8, 15-38.	2.1	128
6	Enhancing Safety and Aroma Appealing of Freshâ€Cut Fruits and Vegetables Using the Antimicrobial and Aromatic Power of Essential Oils. Journal of Food Science, 2009, 74, R84-91.	1.5	116
7	Effect of minimal processing on bioactive compounds and antioxidant activity of fresh-cut â€ [~] Kent' mango (Mangifera indica L.). Postharvest Biology and Technology, 2009, 51, 384-390.	2.9	109
8	In Vitro Inhibition of Pancreatic Lipase by Polyphenols: A Kinetic, Fluorescence Spectroscopy and Molecular Docking Study. Food Technology and Biotechnology, 2017, 55, 519-530.	0.9	106
9	Gallic Acid Content and an Antioxidant Mechanism Are Responsible for the Antiproliferative Activity of †Ataulfo' Mango Peel on LS180 Cells. Molecules, 2018, 23, 695.	1.7	94
10	Potential of Medicinal Plants as Antimicrobial and Antioxidant Agents in Food Industry: A Hypothesis. Journal of Food Science, 2014, 79, R129-37.	1.5	89
11	Carvacrol as potential quorum sensing inhibitor of Pseudomonas aeruginosa and biofilm production on stainless steel surfaces. Food Control, 2017, 75, 255-261.	2.8	89
12	Oregano essential oil-pectin edible films as anti-quorum sensing and food antimicrobial agents. Frontiers in Microbiology, 2014, 5, 699.	1.5	84
13	The Antidiabetic Mechanisms of Polyphenols Related to Increased Glucagon-Like Peptide-1 (GLP1) and Insulin Signaling. Molecules, 2017, 22, 903.	1.7	83
14	Optimizing the Use of Garlic Oil as Antimicrobial Agent on Fresh ut Tomato through a Controlled Release System. Journal of Food Science, 2010, 75, M398-405.	1.5	77
15	Bioaccessibility of polyphenols associated with dietary fiber and in vitro kinetics release of polyphenols in Mexican â€~Ataulfo' mango (Mangifera indica L.) by-products. Food and Function, 2015, 6, 859-868.	2.1	77
16	A 1H NMR Investigation of the Interaction between Phenolic Acids Found in Mango (Manguifera indica) Tj ETQq(Radicals. PLoS ONE, 2015, 10, e0140242.	0 0 0 rgBT 1.1	Overlock 10 75
17	Oregano (<i>Lippia graveolens</i>) essential oil added within pectin edible coatings prevents fungal decay and increases the antioxidant capacity of treated tomatoes. Journal of the Science of Food and Agriculture, 2016, 96, 3772-3778.	1.7	73
18	Modulation of PPAR Expression and Activity in Response to Polyphenolic Compounds in High Fat Diets.	1.8	53

International Journal of Molecular Sciences, 2016, 17, 1002. лур

2

#	Article	IF	CITATIONS
19	Intestinal Permeability and Cellular Antioxidant Activity of Phenolic Compounds from Mango (Mangifera indica cv. Ataulfo) Peels. International Journal of Molecular Sciences, 2018, 19, 514.	1.8	51
20	Encapsulation and stability of a phenolic-rich extract from mango peel within water-in-oil-in-water emulsions. Journal of Functional Foods, 2019, 56, 65-73.	1.6	50
21	Effect of dietary fiber on the bioaccessibility of phenolic compounds of mango, papaya and pineapple fruits by an in vitro digestion model. Food Science and Technology, 2016, 36, 188-194.	0.8	49
22	Influence of whole and fresh-cut mango intake on plasma lipids and antioxidant capacity of healthy adults. Food Research International, 2011, 44, 1386-1391.	2.9	47
23	Individual and Combined Coatings of Chitosan and Carnauba Wax with Oregano Essential Oil to Avoid Water Loss and Microbial Decay of Fresh Cucumber. Coatings, 2020, 10, 614.	1.2	45
24	Effect of edible coatings on bioactive compounds and antioxidant capacity of tomatoes at different maturity stages. Journal of Food Science and Technology, 2014, 51, 2706-2712.	1.4	44
25	Ferulic Acid on Glucose Dysregulation, Dyslipidemia, and Inflammation in Diet-Induced Obese Rats: An Integrated Study. Nutrients, 2017, 9, 675.	1.7	41
26	Antimicrobial activity and thermal stability of rosemary essential oil:βâ^'cyclodextrin capsules applied in tomato juice. LWT - Food Science and Technology, 2019, 111, 837-845.	2.5	40
27	Processing â€~Ataulfo' Mango into Juice Preserves the Bioavailability and Antioxidant Capacity of Its Phenolic Compounds. Nutrients, 2017, 9, 1082.	1.7	34
28	Proanthocyanidins with a Low Degree of Polymerization are Good Inhibitors of Digestive Enzymes Because of their Ability to form Specific Interactions: A Hypothesis. Journal of Food Science, 2018, 83, 2895-2902.	1.5	33
29	Phenolic compounds that cross the blood–brain barrier exert positive health effects as central nervous system antioxidants. Food and Function, 2021, 12, 10356-10369.	2.1	33
30	Combination of <i>Cymbopogon citratus</i> and <i>Allium cepa</i> essential oils increased antibacterial activity in leafy vegetables. Journal of the Science of Food and Agriculture, 2017, 97, 2166-2173.	1.7	32
31	Antimicrobial, antioxidant, and sensorial impacts of oregano and rosemary essential oils over broccoli florets. Journal of Food Processing and Preservation, 2019, 43, e13889.	0.9	32
32	Comparison of Single and Combined Use of Catechin, Protocatechuic, and Vanillic Acids as Antioxidant and Antibacterial Agents against Uropathogenic Escherichia Coli at Planktonic and Biofilm Levels. Molecules, 2018, 23, 2813.	1.7	30
33	The Extrusion Process as an Alternative for Improving the Biological Potential of Sorghum Bran: Phenolic Compounds and Antiradical and Anti-Inflammatory Capacity. Evidence-based Complementary and Alternative Medicine, 2016, 2016, 1-8.	0.5	29
34	Gallotannins are uncompetitive inhibitors of pancreatic lipase activity. Biophysical Chemistry, 2020, 264, 106409.	1.5	28
35	Changes in the activity of proline-metabolising enzymes is associated with increased cultivar-dependent chilling tolerance in mangos, in response to pre-storage melatonin application. Postharvest Biology and Technology, 2021, 182, 111702.	2.9	26
36	Antioxidant and antifungal potential of methanol extracts of Phellinus spp. from Sonora, Mexico. Revista Iberoamericana De Micologia, 2012, 29, 132-138.	0.4	25

#	Article	IF	CITATIONS
37	Ripening of â€~Hass' avocado mesocarp alters its phytochemical profile and the in vitro cytotoxic activity of its methanolic extracts. South African Journal of Botany, 2020, 128, 1-8.	1.2	24
38	<i>In vitro</i> digestibility and release of a mango peel extract encapsulated within water-in-oil-in-water (W ₁ /O/W ₂) emulsions containing sodium carboxymethyl cellulose. Food and Function, 2019, 10, 6110-6120.	2.1	23
39	Phenolic composition and antioxidant activity of Bursera microphylla A. Gray. Industrial Crops and Products, 2020, 152, 112412.	2.5	23
40	Influence of Sorghum Kafirin on Serum Lipid Profile and Antioxidant Activity in Hyperlipidemic Rats (In) Tj ETQqC	0 0 0 rgBT /	Overlock 10 ⁻ 22
41	Bioaccessibility of hydroxycinnamic acids and antioxidant capacity from sorghum bran thermally processed during simulated in vitro gastrointestinal digestion. Journal of Food Science and Technology, 2018, 55, 2021-2030.	1.4	22
42	Phenolic Compounds Promote Diversity of Gut Microbiota and Maintain Colonic Health. Digestive Diseases and Sciences, 2021, 66, 3270-3289.	1.1	22
43	An Exogenous Pre-Storage Melatonin Alleviates Chilling Injury in Some Mango Fruit Cultivars, by Acting on the Enzymatic and Non-Enzymatic Antioxidant System. Antioxidants, 2022, 11, 384.	2.2	22
44	Sweet Potato (Ipomoea batatas L.) Phenotypes: From Agroindustry to Health Effects. Foods, 2022, 11, 1058.	1.9	22
45	Effect of hydrophilic and lipophilic antioxidants from mango peel (<i>Mangifera indica</i> L. cv.) Tj ETQq1 1 0.7	84314 rgB 0.9	T /Qyerlock 1
46	Inhibition of Glucosyltransferase Activity and Glucan Production as an Antibiofilm Mechanism of Lemongrass Essential Oil against Escherichia coli O157:H7. Antibiotics, 2020, 9, 102.	1.5	21
47	Quality, Bioactive Compounds, Antioxidant Capacity, and Enzymes of Raspberries at Different Maturity Stages, Effects of Organic vs. Conventional Fertilization. Foods, 2021, 10, 953.	1.9	21
48	Formulation and characterization of an optimized functional beverage from hibiscus (<i>Hibiscus) Tj ETQq0 0 0 2019, 25, 547-561.</i>	rgBT /Over 1.1	lock 10 Tf 50 20
49	Radical scavenging and antiâ€proliferative capacity of three freezeâ€dried tropical fruits. International Journal of Food Science and Technology, 2017, 52, 1699-1709.	1.3	16
50	The Gastrointestinal Tract as Prime Site for Cardiometabolic Protection by Dietary Polyphenols. Advances in Nutrition, 2019, 10, 999-1011.	2.9	16
51	Effects of ripening on the in vitro antioxidant capacity and bioaccessibility of mango cv. â€~Ataulfo' phenolics. Journal of Food Science and Technology, 2019, 56, 2073-2082.	1.4	15
52	Evaluation of metabolic changes in liver and serum of streptozotocin-induced diabetic rats after Mango diet supplementation. Journal of Functional Foods, 2020, 64, 103695.	1.6	15
53	Antioxidant Enrichment and Antimicrobial Protection of Fresh-Cut Mango Applying Bioactive Extracts from Their Seeds By-Products. Food and Nutrition Sciences (Print), 2013, 04, 197-203.	0.2	15
54	A Melatonin Treatment Delays Postharvest Senescence, Maintains Quality, Reduces Chilling Injury, and	14	15

54A melatorial treatment belays Postnarvest Senescence, Maintains Quality, Reduces Chilling Injury, and1.415Regulates Antioxidant Metabolism in Mango Fruit. Journal of Food Quality, 2022, 2022, 1-18.1.415

#	Article	IF	CITATIONS
55	Interactions between four common plant-derived phenolic acids and pectin, and its effect on antioxidant capacity. Journal of Food Measurement and Characterization, 2018, 12, 992-1004.	1.6	14
56	Interfacial activity of phenolic-rich extracts from avocado fruit waste: Influence on the colloidal and oxidative stability of emulsions and nanoemulsions. Innovative Food Science and Emerging Technologies, 2021, 69, 102665.	2.7	14
57	Relevance of tracking the diversity of Escherichia coli pathotypes to reinforce food safety. International Journal of Food Microbiology, 2022, 374, 109736.	2.1	13
58	Lipidomic and Antioxidant Response to Grape Seed, Corn and Coconut Oils in Healthy Wistar Rats. Nutrients, 2017, 9, 82.	1.7	12
59	Using Sensory Evaluation to Determine the Highest Acceptable Concentration of Mango Seed Extract as Antibacterial and Antioxidant Agent in Fresh-Cut Mango. Foods, 2018, 7, 120.	1.9	12
60	Neuroprotective effects of mango cv. â€~Ataulfo' peel and pulp against oxidative stress in streptozotocinâ€induced diabetic rats. Journal of the Science of Food and Agriculture, 2021, 101, 497-504.	1.7	12
61	<i>In vitro</i> digestibility of phenolic compounds from edible fruits: could it be explained by chemometrics?. International Journal of Food Science and Technology, 2017, 52, 2040-2048.	1.3	11
62	Effects and interactions of roselle (Hibiscus sabdariffa L.), potato peel flour, and beef fat on quality characteristics of beef patties studied by response surface methodology. Journal of Food Processing and Preservation, 2020, 44, e14659.	0.9	11
63	First-Pass Metabolism of Polyphenols from Selected Berries: A High-Throughput Bioanalytical Approach. Antioxidants, 2020, 9, 311.	2.2	11
64	Yield, Quality and Phytochemicals of Organic and Conventional Raspberry Cultivated in Chihuahua, Mexico. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2018, 47, 522-530.	0.5	10
65	Mango phenolics increase the serum apolipoprotein A1/B ratio in rats fed high cholesterol and sodium cholate diets. Journal of the Science of Food and Agriculture, 2019, 99, 1604-1612.	1.7	9
66	Quality, bioactive compounds and antioxidant capacity of raspberries cultivated in northern Mexico. International Journal of Food Properties, 2021, 24, 603-614.	1.3	9
67	Maltodextrin encapsulation improves thermal and pH stability of green tea extract catechins. Journal of Food Processing and Preservation, 2021, 45, e15729.	0.9	9
68	Plant-Derived Substances with Antibacterial, Antioxidant, and Flavoring Potential to Formulate Oral Health Care Products. Biomedicines, 2021, 9, 1669.	1.4	9
69	Annona muricata Leaves as a Source of Bioactive Compounds: Extraction and Quantification Using Ultrasound. Horticulturae, 2022, 8, 560.	1.2	9
70	Antioxidant Capacity and Bioaccessibility of Synergic Mango (cv. Ataulfo) Peel Phenolic Compounds in Edible Coatings Applied to Fresh-Cut Papaya. Food and Nutrition Sciences (Print), 2015, 06, 365-373.	0.2	8
71	Preharvest nitrogen application affects quality and antioxidant status of two tomato cultivars. Bragantia, 2020, 79, 134-144.	1.3	8
72	Ripening of Pithecellobium dulce (Roxb.) Benth. [Guamúchil] Fruit: Physicochemical, Chemical and Antioxidant Changes. Plant Foods for Human Nutrition, 2016, 71, 396-401.	1.4	7

#	Article	IF	CITATIONS
73	Antioxidant Properties and Industrial Uses of Edible Polyporales. Journal of Fungi (Basel,) Tj ETQq1 1 0.784314 r	gBT /Over 1.5	lock 10 Tf 50
74	Contribution of Bioactive Compounds to the Antioxidant Capacity of the Edible Mushroom <i>Neolentinus lepideus</i> . Chemistry and Biodiversity, 2021, 18, e2100085.	1.0	7
75	Valorization of Fermented Shrimp Waste with Supercritical CO2 Conditions: Extraction of Astaxanthin and Effect of Simulated Gastrointestinal Digestion on Its Antioxidant Capacity. Molecules, 2021, 26, 4465.	1.7	7
76	Phenolic compounds from â€~Hass' avocado peel are retained in the indigestible fraction after an in vitro gastrointestinal digestion. Journal of Food Measurement and Characterization, 2021, 15, 1982-1990.	1.6	7
77	Optimization of germination of white sorghum by response surface methodology for preparing porridges with biological potential. CYTA - Journal of Food, 2021, 19, 49-55.	0.9	6
78	Use of nanosystems to improve the anticancer effects of curcumin. Beilstein Journal of Nanotechnology, 2021, 12, 1047-1062.	1.5	6
79	Sorghum bran supplementation ameliorates dyslipidemia, glucose dysregulation, inflammation and stress oxidative induced by a high-fat diet in rats. CYTA - Journal of Food, 2020, 18, 20-30.	0.9	6
80	Curcumin Loaded and Co-loaded Nanosystems: A Review from a Biological Activity Enhancement Perspective. Pharmaceutical Nanotechnology, 2021, 9, 85-100.	0.6	5
81	Modelling the Effects of Roselle Extract, Potato Peel Flour, and Beef Fat on the Sensory Properties and Heterocyclic Amines Formation of Beef Patties Studied by Using Response Surface Methodology. Foods, 2021, 10, 1184.	1.9	5
82	Avocado paste from industrial byproducts as an unconventional source of bioactive compounds: characterization, in vitro digestion and in silico interactions of its main phenolics with cholesterol. Journal of Food Measurement and Characterization, 2021, 15, 5460-5476.	1.6	5
83	Fouquieria splendens: A source of phenolic compounds with antioxidant and antiproliferative potential. European Journal of Integrative Medicine, 2022, 49, 102084.	0.8	5
84	Mango "Ataulfo―Peel Extract Improves Metabolic Dysregulation in Prediabetic Wistar Rats. Life, 2022, 12, 532.	1.1	5
85	Phenolic compounds of Phellinus spp. with antibacterial and antiviral activities. Brazilian Journal of Microbiology, 2022, 53, 1187-1197.	0.8	5
86	Phenolic compounds can induce systemic and central immunomodulation, which result in a neuroprotective effect. Journal of Food Biochemistry, 2022, 46, .	1.2	5
87	Polar Fractionation Affects the Antioxidant Properties of Methanolic Extracts from Species of Genus Phellinus Quel. (Higher Basidiomycetes). International Journal of Medicinal Mushrooms, 2012, 14, 563-573.	0.9	4
88	Subâ€chronic consumption of a phenolicâ€rich avocado paste extract induces GLPâ€1â€, leptinâ€, and adiponectinâ€mediated satiety in Wistar rats. Journal of Food Biochemistry, 2021, 45, e13957.	1.2	3
89	The role of ion channels on the physiology of the neurovascular unit and the regulation of cerebral blood flow. Journal of Cellular Neuroscience and Oxidative Stress, 2022, 13, 1004-1013.	0.1	1
90	Sustratos y ácido indol-3-butÃŧico en la propagación de frambuesa. Terra Latinoamericana, 0, 39, .	0.3	0

#	Article	IF	CITATIONS
91	Effects of Roselle Extract, Potato Peel Flour, and Beef Fat on the Formation of HCA of Beef Patties Studied by Response Surface Methodology. Proceedings (mdpi), 2020, 70, .	0.2	0