Markus Weiler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/596124/publications.pdf Version: 2024-02-01

MADKIIS WEILED

#	Article	IF	CITATIONS
1	Drought reduces water uptake in beech from the drying topsoil, but no compensatory uptake occurs from deeper soil layers. New Phytologist, 2022, 233, 194-206.	3.5	51
2	Influence of sample preparation procedures on water stable isotopes in plant organs using the waterâ€vapour equilibrium method. Ecohydrology, 2022, 15, .	1.1	1
3	Event controls on intermittent streamflow in a temperate climate. Hydrology and Earth System Sciences, 2022, 26, 2671-2696.	1.9	1
4	Subsurface flow and phosphorus dynamics in beech forest hillslopes during sprinkling experiments: how fast is phosphorus replenished?. Biogeosciences, 2021, 18, 1009-1027.	1.3	8
5	Fluxes from soil moisture measurements (FluSM v1.0): a data-driven water balance framework for permeable pavements. Geoscientific Model Development, 2021, 14, 2127-2142.	1.3	2
6	Technical note: Diagnostic efficiency – specific evaluation of model performance. Hydrology and Earth System Sciences, 2021, 25, 2187-2198.	1.9	12
7	Potential of a Gravityâ€Driven Film Flow Model to Predict Infiltration in a Catchment for Diverse Soil and Land Cover Combinations. Water Resources Research, 2021, 57, e2019WR026988.	1.7	5
8	The Maimai <scp>M8</scp> experimental catchment database: Forty years of processâ€based research on steep, wet hillslopes. Hydrological Processes, 2021, 35, e14112.	1.1	4
9	Temporal dynamics of tree xylem water isotopes: in situ monitoring and modeling. Biogeosciences, 2021, 18, 4603-4627.	1.3	33
10	Diel patterns in stream nitrate concentration produced by in-stream processes. Biogeosciences, 2021, 18, 4705-4715.	1.3	4
11	Technical note: Unresolved aspects of the direct vapor equilibration method for stable isotope analysis (<i>l´</i> ¹⁸ O,) Tj ETQq1 1 O unifying protocols through empirical and mathematical scrutiny. Hydrology and Earth System	784314 rg 1.9	BT /Overlock 11
12	Sciences, 2021, 25, 5219-5235. Hierarchical climate-driven dynamics of the active channel length in temporary streams. Scientific Reports, 2021, 11, 21503.	1.6	21
13	Longâ€Term Changes in Runoff Generation Mechanisms for Two Proglacial Areas in the Swiss Alps II: Subsurface Flow. Water Resources Research, 2021, 57, .	1.7	10
14	Groundwater controls on colloidal transport in forest stream waters. Science of the Total Environment, 2020, 717, 134638.	3.9	13
15	Xylem sap phosphorus sampling using microdialysis—a non-destructive high sampling frequency method tested under laboratory and field conditions. Tree Physiology, 2020, 40, 1623-1638.	1.4	5
16	Large cale Assessment of Delayed Groundwater Responses to Drought. Water Resources Research, 2020, 56, e2019WR025441.	1.7	60
17	Beyond binary baseflow separation: a delayed-flow index for multiple streamflow contributions. Hydrology and Earth System Sciences, 2020, 24, 849-867.	1.9	36
18	The impact of landscape evolution on soil physics: evolution of soil physical and hydraulic properties along two chronosequences of proglacial moraines. Earth System Science Data, 2020, 12, 3189-3204.	3.7	17

#	Article	IF	CITATIONS
19	A distributed soil moisture, temperature and infiltrometer dataset for permeable pavements and green spaces. Earth System Science Data, 2020, 12, 501-517.	3.7	6
20	Soil moisture: variable in space but redundant in time. Hydrology and Earth System Sciences, 2020, 24, 2633-2653.	1.9	19
21	Field observations of soil hydrological flow path evolution over 10Âmillennia. Hydrology and Earth System Sciences, 2020, 24, 3271-3288.	1.9	13
22	Predicting probabilities of streamflow intermittency across a temperate mesoscale catchment. Hydrology and Earth System Sciences, 2020, 24, 5453-5472.	1.9	14
23	Characterising hillslope–stream connectivity with a joint event analysis of stream and groundwater levels. Hydrology and Earth System Sciences, 2020, 24, 5713-5744.	1.9	11
24	Runoff reaction from extreme rainfall events on natural hillslopes: a data set from 132 large-scale sprinkling experiments in south-western Germany. Earth System Science Data, 2020, 12, 245-255.	3.7	5
25	The CH-IRP data set: a decade of fortnightly data on <i>Î</i> ² H and <i>I`</i> ¹⁸ O in streamflow and precipitation in Switzerland. Earth System Science Data. 2020. 12. 3057-3066.	3.7	0
26	Identification of groundwater mean transit times of precipitation and riverbank infiltration by two omponent lumped parameter models. Hydrological Processes, 2019, 33, 3098-3118.	1.1	1
27	The Seasonal Origins of Streamwater in Switzerland. Geophysical Research Letters, 2019, 46, 10425-10434.	1.5	12
28	Continuous, near-real-time observations of water stable isotope ratios during rainfall and throughfall events. Hydrology and Earth System Sciences, 2019, 23, 3007-3019.	1.9	10
29	Influences of Macropores on Infiltration into Seasonally Frozen Soil. Vadose Zone Journal, 2019, 18, 1-14.	1.3	37
30	The Demographics of Water: A Review of Water Ages in the Critical Zone. Reviews of Geophysics, 2019, 57, 800-834.	9.0	197
31	Application of a laser-based spectrometer for continuous in situ measurements of stable isotopes of soil CO ₂ in calcareous and acidic soils. Soil, 2019, 5, 49-62.	2.2	8
32	†Teflon Basin' or Not? A High-Elevation Catchment Transit Time Modeling Approach. Hydrology, 2019, 6, 92.	1.3	5
33	Spatio-temporal relevance and controls of preferential flow at the landscape scale. Hydrology and Earth System Sciences, 2019, 23, 4869-4889.	1.9	41
34	Phosphorus Fluxes in a Temperate Forested Watershed: Canopy Leaching, Runoff Sources, and In-Stream Transformation. Frontiers in Forests and Global Change, 2019, 2, .	1.0	14
35	Model Based Estimation of a Natural Water Balance as Reference for Planning in Urban Areas. Green Energy and Technology, 2019, , 953-957.	0.4	2
36	Your work is my boundary condition!. Journal of Hydrology, 2019, 571, 235-243.	2.3	33

#	Article	IF	CITATIONS
37	Monitoring ephemeral, intermittent and perennial streamflow: a dataset from 182 sites in the Attert catchment, Luxembourg. Earth System Science Data, 2019, 11, 1363-1374.	3.7	27
38	Analysis and mapping of present and future drought conditions over Greek areas with different climate conditions. Theoretical and Applied Climatology, 2018, 131, 259-270.	1.3	16
39	Magic components—why quantifying rain, snowmelt, and icemelt in river discharge is not easy. Hydrological Processes, 2018, 32, 160-166.	1.1	31
40	Correcting for Biogenic Gas Matrix Effects on Laserâ€Based Pore Waterâ€Vapor Stable Isotope Measurements. Vadose Zone Journal, 2018, 17, 1-10.	1.3	27
41	Diel fluctuations of viscosity-driven riparian inflow affect streamflow DOC concentration. Biogeosciences, 2018, 15, 2177-2188.	1.3	10
42	Inter-laboratory comparison of cryogenic water extraction systems for stable isotope analysis of soil water. Hydrology and Earth System Sciences, 2018, 22, 3619-3637.	1.9	92
43	Technical note: Representing glacier geometry changes in a semi-distributed hydrological model. Hydrology and Earth System Sciences, 2018, 22, 2211-2224.	1.9	31
44	Tree-, stand- and site-specific controls on landscape-scale patterns of transpiration. Hydrology and Earth System Sciences, 2018, 22, 13-30.	1.9	32
45	Why and when it is useful to publish and share inconclusive results and failures: reply to "Reporting negative results to stimulate experimental hydrology― Hydrological Sciences Journal, 2018, 63, 1273-1274.	1.2	0
46	Measuring and Modeling Stable Isotopes of Mobile and Bulk Soil Water. Vadose Zone Journal, 2018, 17, 1-18.	1.3	84
47	Sensitivity of young water fractions to hydro-climatic forcing and landscape properties across 22ÂSwiss catchments. Hydrology and Earth System Sciences, 2018, 22, 3841-3861.	1.9	77
48	Incentives for field hydrology and data sharing: collaboration and compensation: reply to "A need for incentivizing field hydrology, especially in an era of open dataâ€*. Hydrological Sciences Journal, 2018, 63, 1266-1268.	1.2	8
49	Employing stable isotopes to determine the residence times of soil water and the temporal origin of water taken up by <i>Fagus sylvatica</i> and <i>Picea abies</i> in a temperate forest. New Phytologist, 2018, 219, 1300-1313.	3.5	115
50	Foliar P- but not N resorption efficiency depends on the P-concentration and the N:P ratio in trees of temperate forests. Trees - Structure and Function, 2018, 32, 1443-1455.	0.9	20
51	Historical glacier outlines from digitized topographic maps of the Swiss Alps. Earth System Science Data, 2018, 10, 805-814.	3.7	14
52	The hydrologic outcome of a Low Impact Development (LID) site including superposition with streamflow peaks. Urban Water Journal, 2017, 14, 143-159.	1.0	44
53	Catchment water storage variation with elevation. Hydrological Processes, 2017, 31, 2000-2015.	1.1	103
54	Mineral mediated isotope fractionation of soil water. Rapid Communications in Mass Spectrometry, 2017, 31, 269-280.	0.7	65

4

#	Article	IF	CITATIONS
55	Water research in Germany: from the reconstruction of the Roman Rhine to a risk assessment for aquatic neophytes. Environmental Earth Sciences, 2017, 76, 1.	1.3	5
56	Influence of forest and shrub canopies on precipitation partitioning and isotopic signatures. Hydrological Processes, 2017, 31, 4282-4296.	1.1	32
57	Quantifying components of the phosphorus cycle in temperate forests. Wiley Interdisciplinary Reviews: Water, 2017, 4, e1243.	2.8	44
58	Snow redistribution for the hydrological modeling of alpine catchments. Wiley Interdisciplinary Reviews: Water, 2017, 4, e1232.	2.8	63
59	Macropores and preferential flow—a loveâ€hate relationship. Hydrological Processes, 2017, 31, 15-19.	1.1	39
60	Form and function in hillslope hydrology: characterization of subsurface flow based on response observations. Hydrology and Earth System Sciences, 2017, 21, 3727-3748.	1.9	47
61	A sprinkling experiment to quantify celerity–velocity differences at the hillslope scale. Hydrology and Earth System Sciences, 2017, 21, 5891-5910.	1.9	10
62	Dominant controls of transpiration along a hillslope transect inferred from ecohydrological measurements and thermodynamic limits. Hydrology and Earth System Sciences, 2016, 20, 2063-2083.	1.9	33
63	Model-aided quantification of dissolved carbon and nitrogen release after windthrow disturbance in an Austrian karst system. Biogeosciences, 2016, 13, 159-174.	1.3	44
64	Does drought alter hydrological functions in forest soils?. Hydrology and Earth System Sciences, 2016, 20, 1301-1317.	1.9	28
65	A method for <i>in situ</i> monitoring of the isotope composition of tree xylem water using laser spectroscopy. Plant, Cell and Environment, 2016, 39, 2055-2063.	2.8	77
66	Dissolved and colloidal phosphorus fluxes in forest ecosystems—an almost blind spot in ecosystem research. Journal of Plant Nutrition and Soil Science, 2016, 179, 425-438.	1.1	125
67	Highâ€resolution isotope measurements resolve rapid ecohydrological dynamics at the soil–plant interface. New Phytologist, 2016, 210, 839-849.	3.5	149
68	Travel times in the vadose zone: Variability in space and time. Water Resources Research, 2016, 52, 5727-5754.	1.7	103
69	Historical tracking of nitrate in contrasting vineyards using water isotopes and nitrate depth profiles. Agriculture, Ecosystems and Environment, 2016, 222, 185-192.	2.5	24
70	Illuminating hydrological processes at the soilâ€vegetationâ€atmosphere interface with water stable isotopes. Reviews of Geophysics, 2016, 54, 674-704.	9.0	342
71	Recovery of trees from drought depends on belowground sink control. Nature Plants, 2016, 2, 16111.	4.7	170
72	Diel discharge cycles explained through viscosity fluctuations in riparian inflow. Water Resources Research, 2016, 52, 8744-8755.	1.7	23

#	Article	IF	CITATIONS
73	Model-based quantification of runoff generation processes at high spatial and temporal resolution. Environmental Earth Sciences, 2016, 75, 1.	1.3	19
74	A tracerâ€based simulation approach to quantify seasonal dynamics of surfaceâ€groundwater interactions in the Pantanal wetland. Hydrological Processes, 2016, 30, 2590-2602.	1.1	8
75	Correcting Laser-Based Water Stable Isotope Readings Biased by Carrier Gas Changes. Environmental Science & Technology, 2016, 50, 7074-7081.	4.6	28
76	Nitrate sinks and sources as controls of spatio-temporal water quality dynamics in an agricultural headwater catchment. Hydrology and Earth System Sciences, 2016, 20, 843-857.	1.9	16
77	Spatial and Temporal Dynamics of Hillslopeâ€Scale Soil Moisture Patterns: Characteristic States and Transition Mechanisms. Vadose Zone Journal, 2015, 14, 1-16.	1.3	51
78	Spatioâ€ŧemporal controls of snowmelt and runoff generation during rainâ€onâ€snow events in a midâ€latitude mountain catchment. Hydrological Processes, 2015, 29, 3649-3664.	1.1	45
79	Established methods and new opportunities for pore water stable isotope analysis. Hydrological Processes, 2015, 29, 5174-5192.	1.1	103
80	Is there a superior conceptual groundwater model structure for baseflow simulation?. Hydrological Processes, 2015, 29, 1301-1313.	1.1	26
81	The effect of soil moisture, soil particle size, litter layer and carbonic anhydrase on the oxygen isotopic composition of soilâ€released <scp>CO₂</scp> . European Journal of Soil Science, 2015, 66, 566-576.	1.8	5
82	Estimating flow and transport parameters in the unsaturated zone with pore water stable isotopes. Hydrology and Earth System Sciences, 2015, 19, 2617-2635.	1.9	79
83	Quantifying sensitivity to droughts – an experimental modeling approach. Hydrology and Earth System Sciences, 2015, 19, 1371-1384.	1.9	27
84	Drought in forest understory ecosystems – a novel rainfall reduction experiment. Biogeosciences, 2015, 12, 961-975.	1.3	36
85	Coupled Ground- and Space-Based Assessment of Regional Inundation Dynamics to Assess Impact of Local and Upstream Changes on Evaporation in Tropical Wetlands. Remote Sensing, 2015, 7, 9769-9795.	1.8	6
86	Soil Bacterial Community Structure Responses to Precipitation Reduction and Forest Management in Forest Ecosystems across Germany. PLoS ONE, 2015, 10, e0122539.	1.1	38
87	Physico-chemical characteristics affect the spatial distribution of pesticide and transformation product loss to an agricultural brook. Science of the Total Environment, 2015, 532, 733-743.	3.9	20
88	Do we need a Community Hydrological Model?. Water Resources Research, 2015, 51, 7777-7784.	1.7	57
89	Corrigendum to "Spatial controls on groundwater response dynamics in a snowmelt-dominated montane catchment" published in Hydrol. Earth Syst. Sci., 18, 1835–1856, 2014. Hydrology and Earth System Sciences, 2014, 18, 2087-2087.	1.9	0
90	Floods and climate: emerging perspectives for flood risk assessment and management. Natural Hazards and Earth System Sciences, 2014, 14, 1921-1942.	1.5	239

#	Article	IF	CITATIONS
91	HESS Opinions: From response units to functional units: a thermodynamic reinterpretation of the HRU concept to link spatial organization and functioning of intermediate scale catchments. Hydrology and Earth System Sciences, 2014, 18, 4635-4655.	1.9	78
92	Reevaluation of transit time distributions, mean transit times and their relation to catchment topography. Hydrology and Earth System Sciences, 2014, 18, 4751-4771.	1.9	67
93	Large-scale analysis of changing frequencies of rain-on-snow events with flood-generation potential. Hydrology and Earth System Sciences, 2014, 18, 2695-2709.	1.9	89
94	Inundation and groundwater dynamics for quantification of evaporative water loss in tropical wetlands. Hydrology and Earth System Sciences, 2014, 18, 4407-4422.	1.9	5
95	Variability of Observed Energy Fluxes during Rain-on-Snow and Clear Sky Snowmelt in a Midlatitude Mountain Environment. Journal of Hydrometeorology, 2014, 15, 1220-1237.	0.7	42
96	Potential of a low ost sensor network to understand the spatial and temporal dynamics of a mountain snow cover. Water Resources Research, 2014, 50, 2533-2550.	1.7	31
97	Interactions and connectivity between runoff generation processes of different spatial scales. Hydrological Processes, 2014, 28, 1916-1930.	1.1	33
98	Karst water resources in a changing world: Review of hydrological modeling approaches. Reviews of Geophysics, 2014, 52, 218-242.	9.0	610
99	Estimating water balance components of tropical wetland lakes in the Pantanal dry season, Brazil. Hydrological Sciences Journal, 2014, 59, 2158-2172.	1.2	5
100	Intraspecific differences in responses to rainshelter-induced drought and competition of Fagus sylvatica L. across Germany. Forest Ecology and Management, 2014, 330, 283-293.	1.4	15
101	Tracking water pathways in steep hillslopes by $\hat{l}180$ depth profiles of soil water. Journal of Hydrology, 2014, 519, 340-352.	2.3	89
102	Continual in situ monitoring of pore water stable isotopes in the subsurface. Hydrology and Earth System Sciences, 2014, 18, 1819-1833.	1.9	99
103	Spatial controls on groundwater response dynamics in a snowmelt-dominated montane catchment. Hydrology and Earth System Sciences, 2014, 18, 1835-1856.	1.9	18
104	Seasonal soil moisture patterns: Controlling transit time distributions in a forested headwater catchment. Water Resources Research, 2014, 50, 5270-5289.	1.7	45
105	Streamflow sensitivity to drought scenarios in catchments with different geology. Geophysical Research Letters, 2014, 41, 6174-6183.	1.5	82
106	Exploration of remotely sensed forest structure and ultrasonic range sensor metrics to improve empirical snow models. Hydrological Processes, 2014, 28, 4433-4448.	1.1	12
107	Progress in the hydrologic simulation of time variant recharge areas of karst systems $\hat{a} \in \mathcal{E}$ Exemplified at a karst spring in Southern Spain. Advances in Water Resources, 2013, 54, 149-160.	1.7	93
108	A toolkit for groundwater mean residence time interpretation with gaseous tracers. Computers and Geosciences, 2013, 61, 116-125.	2.0	5

#	Article	IF	CITATIONS
109	Testing the realism of model structures to identify karst system processes using water quality and quantity signatures. Water Resources Research, 2013, 49, 3345-3358.	1.7	81
110	Spatial distribution of stable water isotopes in alpine snow cover. Hydrology and Earth System Sciences, 2013, 17, 2657-2668.	1.9	39
111	Are streamflow recession characteristics really characteristic?. Hydrology and Earth System Sciences, 2013, 17, 817-828.	1.9	94
112	Model-based estimation of pesticides and transformation products and their export pathways in a headwater catchment. Hydrology and Earth System Sciences, 2013, 17, 5213-5228.	1.9	32
113	From observation to the quantification of snow processes with a time-lapse camera network. Hydrology and Earth System Sciences, 2013, 17, 1415-1429.	1.9	69
114	Process-based karst modelling to relate hydrodynamic and hydrochemical characteristics to system properties. Hydrology and Earth System Sciences, 2013, 17, 3305-3321.	1.9	70
115	The master transit time distribution of variable flow systems. Water Resources Research, 2012, 48, .	1.7	135
116	Two-dimensional assessment of solute transport in shallow waters with thermal imaging and heated water. Advances in Water Resources, 2012, 43, 67-75.	1.7	28
117	Forest harvesting effects on the magnitude and frequency of peak flows can increase with return period. Water Resources Research, 2012, 48, .	1.7	41
118	Multitracer assessment of wetland succession: Effects on conservative and nonconservative transport processes. Water Resources Research, 2012, 48, .	1.7	14
119	Continuous in situ measurements of stable isotopes in liquid water. Water Resources Research, 2012, 48, .	1.7	50
120	On the risk of obtaining misleading results by pooling streamflow data for trend analyses. Water Resources Research, 2012, 48, .	1.7	4
121	Hillslope characteristics as controls of subsurface flow variability. Hydrology and Earth System Sciences, 2012, 16, 3699-3715.	1.9	70
122	It takes a community to raise a hydrologist: the Modular Curriculum for Hydrologic Advancement (MOCHA). Hydrology and Earth System Sciences, 2012, 16, 3405-3418.	1.9	31
123	A new approach to model the spatial and temporal variability of recharge to karst aquifers. Hydrology and Earth System Sciences, 2012, 16, 2219-2231.	1.9	82
124	A porewater-based stable isotope approach for the investigation of subsurface hydrological processes. Hydrology and Earth System Sciences, 2012, 16, 631-640.	1.9	74
125	Ecohydrological consequences of drought―and infestation―triggered tree dieâ€off: insights and hypotheses. Ecohydrology, 2012, 5, 145-159.	1.1	211
126	Evapotranspiration and land cover transitions: longâ€ŧerm watershed response in recovering forested ecosystems. Ecohydrology, 2012, 5, 721-732.	1.1	12

#	Article	IF	CITATIONS
127	Intercomparing hillslope hydrological dynamics: Spatioâ€temporal variability and vegetation cover effects. Water Resources Research, 2012, 48, .	1.7	52
128	Identification of a karst system's intrinsic hydrodynamic parameters: upscaling from single springs to the whole aquifer. Environmental Earth Sciences, 2012, 65, 2377-2389.	1.3	45
129	Hydrological mobilization of mercury and dissolved organic carbon in a snow-dominated, forested watershed: Conceptualization and modeling. Journal of Geophysical Research, 2011, 116, .	3.3	37
130	New Dimensions of Hillslope Hydrology. Ecological Studies, 2011, , 455-481.	0.4	41
131	Quantification of localized groundwater inflow into streams using ground-based infrared thermography. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	53
132	Sensitivity of a data-driven soil water balance model to estimate summer evapotranspiration along a forest chronosequence. Hydrology and Earth System Sciences, 2011, 15, 3461-3473.	1.9	24
133	Influence of distributed flow losses and gains on the estimation of transient storage parameters from stream tracer experiments. Journal of Hydrology, 2011, 396, 277-291.	2.3	24
134	Internal catchment process simulation in a snowâ€dominated basin: performance evaluation with spatiotemporally variable runoff generation and groundwater dynamics. Hydrological Processes, 2011, 25, 3187-3203.	1.1	16
135	Uncertainty of Precipitation Estimates Caused by Sparse Gauging Networks in a Small, Mountainous Watershed. Journal of Hydrologic Engineering - ASCE, 2011, 16, 460-471.	0.8	38
136	Field-Based Observation of Hydrological Processes. , 2011, , 339-350.		2
137	Forest canopy effects on snow accumulation and ablation: An integrative review of empirical results. Journal of Hydrology, 2010, 392, 219-233.	2.3	245
138	Piezometric response in zones of a watershed with lateral preferential flow as a firstâ€order control on subsurface flow. Hydrological Processes, 2010, 24, 2237-2247.	1.1	23
139	How old is streamwater? Open questions in catchment transit time conceptualization, modelling and analysis. Hydrological Processes, 2010, 24, 1745-1754.	1.1	276
140	Benchmarking of Two Dualâ€Permeability Models under Different Land Use and Land Cover. Vadose Zone Journal, 2010, 9, 226-237.	1.3	12
141	Effect of the spatial distribution of physical aquifer properties on modelled water table depth and stream discharge in a headwater catchment. Hydrology and Earth System Sciences, 2010, 14, 1179-1194.	1.9	26
142	Explicit simulations of stream networks to guide hydrological modelling in ungauged basins. Hydrology and Earth System Sciences, 2010, 14, 1435-1448.	1.9	21
143	Integrated response and transit time distributions of watersheds by combining hydrograph separation and long-term transit time modeling. Hydrology and Earth System Sciences, 2010, 14, 1537-1549.	1.9	81
144	The influence of ground- and lidar-derived forest structure metrics on snow accumulation and ablation in disturbed forests. Canadian Journal of Forest Research, 2010, 40, 812-821.	0.8	47

#	Article	IF	CITATIONS
145	A New Low-Cost, Stand-Alone Sensor System for Snow Monitoring. Journal of Atmospheric and Oceanic Technology, 2010, 27, 1973-1978.	0.5	25
146	Hydrological Modeling of an Alpine Dolomite Karst System. Environmental Earth Sciences, 2010, , 223-229.	0.1	2
147	Dye staining and excavation of a lateral preferential flow network. Hydrology and Earth System Sciences, 2009, 13, 935-944.	1.9	94
148	A New Approach in Measuring Rainfall Interception by Urban Trees in Coastal British Columbia. Water Quality Research Journal of Canada, 2009, 44, 16-25.	1.2	74
149	Controls of land use and soil structure on water movement: Lessons for pollutant transfer through the unsaturated zone. Journal of Hydrology, 2009, 369, 241-252.	2.3	81
150	Use of distributed snow measurements to test and improve a snowmelt model for predicting the effect of forest clear-cutting. Journal of Hydrology, 2009, 376, 94-106.	2.3	40
151	Viability of motes for hydrological measurement. Water Resources Research, 2009, 45, .	1.7	23
152	Subsurface flow velocities in a hillslope with lateral preferential flow. Water Resources Research, 2009, 45, .	1.7	75
153	Assessing differences in tree and stand structure following beetle infestation using lidar data. Canadian Journal of Remote Sensing, 2009, 35, 497-508.	1.1	27
154	Conceptualization in catchment modelling: simply learning?. Hydrological Processes, 2008, 22, 2389-2393.	1.1	65
155	Measuring snow accumulation and ablation dynamics during rainâ€onâ€snow events: innovative measurement techniques. Hydrological Processes, 2008, 22, 4805-4812.	1.1	43
156	Hillslope dynamics modeled with increasing complexity. Journal of Hydrology, 2008, 361, 24-40.	2.3	78
157	The spatiotemporal variability of runoff generation and groundwater dynamics in a snow-dominated catchment. Journal of Hydrology, 2008, 352, 50-66.	2.3	42
158	Conceptualizing lateral preferential flow and flow networks and simulating the effects on gauged and ungauged hillslopes. Water Resources Research, 2007, 43, .	1.7	194
159	The influence of forest and topography on snow accumulation and melt at the watershed-scale. Journal of Hydrology, 2007, 347, 101-115.	2.3	166
160	Comment on "An assessment of the tracerâ€based approach to quantifying groundwater contributions to streamflow―by J. P. Jones et al Water Resources Research, 2007, 43, .	1.7	9
161	Moving beyond heterogeneity and process complexity: A new vision for watershed hydrology. Water Resources Research, 2007, 43, .	1.7	613
162	Storm pulses of dissolved CO ₂ in a forested headwater Amazonian stream explored using hydrograph separation. Water Resources Research, 2007, 43, .	1.7	39

#	Article	IF	CITATIONS
163	Taking the pulse of hydrology education. Hydrological Processes, 2007, 21, 1789-1792.	1.1	40
164	Integrating tracer experiments with modeling to assess runoff processes and water transit times. Advances in Water Resources, 2007, 30, 824-837.	1.7	158
165	Testing nutrient flushing hypotheses at the hillslope scale: A virtual experiment approach. Journal of Hydrology, 2006, 319, 339-356.	2.3	116
166	Storage of water on vegetation under simulated rainfall of varying intensity. Advances in Water Resources, 2006, 29, 974-986.	1.7	157
167	An infiltration model based on flow variability in macropores: development, sensitivity analysis and applications. Journal of Hydrology, 2005, 310, 294-315.	2.3	81
168	Temporal persistence of spatial patterns in throughfall. Journal of Hydrology, 2005, 314, 263-274.	2.3	187
169	The role of topography on catchment-scale water residence time. Water Resources Research, 2005, 41, .	1.7	571
170	SOIL DEVELOPMENT AND PROPERTIES Water Storage and Movement. , 2004, , 1253-1260.		7
171	Inferring flow types from dye patterns in macroporous soils. Geoderma, 2004, 120, 137-153.	2.3	205
172	Virtual experiments: a new approach for improving process conceptualization in hillslope hydrology. Journal of Hydrology, 2004, 285, 3-18.	2.3	282
173	An experimental tracer study of the role of macropores in infiltration in grassland soils. Hydrological Processes, 2003, 17, 477-493.	1.1	258
174	How does rainfall become runoff? A combined tracer and runoff transfer function approach. Water Resources Research, 2003, 39, .	1.7	191
175	Simulating surface and subsurface initiation of macropore flow. Journal of Hydrology, 2003, 273, 139-154.	2.3	94
176	A process based assessment of the potential to reduce flood runoff by land use change. Journal of Hydrology, 2002, 267, 74-79.	2.3	122
177	The role of experimental work in hydrological sciences – insights from a community survey. Hydrological Sciences Journal, 0, , 1-4.	1.2	25
178	Stress testing as complement to climate scenarios: recharge scenarios to quantify streamflow drought sensitivity. Proceedings of the International Association of Hydrological Sciences, 0, 383, 43-50.	1.0	7