
Christopher J Rhodes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5960871/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Type 2 Diabetes-a Matter of Â-Cell Life and Death?. Science, 2005, 307, 380-384.	12.6	828
2	Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic β cell via two distinct site-specific endopeptidases. Nature, 1988, 333, 93-96.	27.8	428
3	Regulated Autophagy Controls Hormone Content in Secretory-Deficient Pancreatic Endocrine β-Cells. Molecular Endocrinology, 2007, 21, 2255-2269.	3.7	163
4	The dynamic plasticity of insulin production in \hat{l}^2 -cells. Molecular Metabolism, 2017, 6, 958-973.	6.5	133
5	Resolution of NASH and hepatic fibrosis by the CLP-1R and GCGR dual-agonist cotadutide via modulating mitochondrial function and lipogenesis. Nature Metabolism, 2020, 2, 413-431.	11.9	131
6	Insulin Secretory Deficiency and Glucose Intolerance in Rab3A Null Mice. Journal of Biological Chemistry, 2003, 278, 9715-9721.	3.4	110
7	Loss of neurotensin receptor-1 disrupts the control of the mesolimbic dopamine system by leptin and promotes hedonic feeding and obesity. Molecular Metabolism, 2013, 2, 423-434.	6.5	103
8	Pancreatic β-Cell Adaptive Plasticity in Obesity Increases Insulin Production but Adversely Affects Secretory Function. Diabetes, 2016, 65, 438-450.	0.6	88
9	Calcitonin Receptor Neurons in the Mouse Nucleus Tractus Solitarius Control Energy Balance via the Non-aversive Suppression of Feeding. Cell Metabolism, 2020, 31, 301-312.e5.	16.2	68
10	Specific Glucose-Induced Control of Insulin Receptor Substrate-2 Expression Is Mediated via Ca2+-Dependent Calcineurin/NFAT Signaling in Primary Pancreatic Islet β-Cells. Diabetes, 2011, 60, 2892-2902.	0.6	60
11	A genetic map of the mouse dorsal vagal complex and its role in obesity. Nature Metabolism, 2021, 3, 530-545.	11.9	60
12	SORCS1 is necessary for normal insulin secretory granule biogenesis in metabolically stressed β cells. Journal of Clinical Investigation, 2014, 124, 4240-4256.	8.2	53
13	Leptin receptor–expressing nucleus tractus solitarius neurons suppress food intake independently of GLP1 in mice. JCI Insight, 2020, 5, .	5.0	44
14	Pancreatic β-Cell Rest Replenishes Insulin Secretory Capacity and Attenuates Diabetes in an Extreme Model of Obese Type 2 Diabetes. Diabetes, 2019, 68, 131-140.	0.6	37
15	Nonalcoholic steatohepatitis severity is defined by a failure in compensatory antioxidant capacity in the setting of mitochondrial dysfunction. World Journal of Gastroenterology, 2018, 24, 1748-1765.	3.3	37
16	Combined loss of GLP-1R and Y2R does not alter progression of high-fat diet-induced obesity or response to RYGB surgery in mice. Molecular Metabolism, 2019, 25, 64-72.	6.5	31
17	Essential Role for Hypothalamic Calcitonin Receptor‒Expressing Neurons in the Control of Food Intake by Leptin. Endocrinology, 2018, 159, 1860-1872.	2.8	29
18	A fluorescent timer reporter enables sorting of insulin secretory granules by age. Journal of Biological Chemistry, 2020, 295, 8901-8911.	3.4	22

#	Article	IF	CITATIONS
19	Characterization of Signaling Pathways Associated with Pancreatic β-cell Adaptive Flexibility in Compensation of Obesity-linked Diabetes in db/db Mice. Molecular and Cellular Proteomics, 2020, 19, 971-993.	3.8	22
20	β-Cell Control of Insulin Production During Starvation-Refeeding in Male Rats. Endocrinology, 2018, 159, 895-906.	2.8	20
21	Proteomic Analysis of Restored Insulin Production and Trafficking in Obese Diabetic Mouse Pancreatic Islets Following Euglycemia. Journal of Proteome Research, 2019, 18, 3245-3258.	3.7	19
22	NTS Prlh overcomes orexigenic stimuli and ameliorates dietary and genetic forms of obesity. Nature Communications, 2021, 12, 5175.	12.8	15
23	Peptide-YY3-36/glucagon-like peptide-1 combination treatment of obese diabetic mice improves insulin sensitivity associated with recovered pancreatic β-cell function and synergistic activation of discrete hypothalamic and brainstem neuronal circuitries. Molecular Metabolism, 2022, 55, 101392.	6.5	10
24	Calcineurin/NFATc2 and PI3K/AKT signaling maintains β-cell identity and function during metabolic and inflammatory stress. IScience, 2022, 25, 104125.	4.1	3