
Xiuwen Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5960791/publications.pdf Version: 2024-02-01

XIIIWEN ZHOU

#	Article	IF	CITATIONS
1	Iridium(III) Phosphors–Bearing Functional 9â€Phenylâ€7,9â€dihydroâ€8Hâ€purinâ€8â€ylidene Chelates and B Hyperphosphorescent OLED Devices. Advanced Photonics Research, 2022, 3, .	lue 1.7	23
2	Efficient Blue Electrophosphorescence and Hyperphosphorescence Generated by Bis-tridentate Iridium(III) Complexes. Inorganic Chemistry, 2022, 61, 8898-8908.	1.9	18
3	Blue Phosphorescence and Hyperluminescence Generated from Imidazo[4,5â€b]pyridinâ€2â€ylideneâ€Based Iridium(III) Phosphors. Advanced Science, 2022, 9, .	5.6	28
4	Nearâ€Infrared OLEDs Based on Functional Pyrazinyl Azolate Os(II) Phosphors and Deuteration. Advanced Optical Materials, 2022, 10, .	3.6	15
5	Rational Tuning of Bis-Tridentate Ir(III) Phosphors to Deep-Blue with High Efficiency and Sub-microsecond Lifetime. ACS Applied Materials & Interfaces, 2021, 13, 15437-15447.	4.0	34
6	Homoleptic Ir(III) Phosphors with 2-Phenyl-1,2,4-triazol-3-ylidene Chelates for Efficient Blue Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 59023-59034.	4.0	23
7	Tuning the optical properties of <i>N</i> -aryl benzothiadiazole <i>via</i> Cu(<scp>ii</scp>)-catalyzed intramolecular C–H amination: the impact of the molecular structure on aggregation and solid state luminescence. Organic Chemistry Frontiers, 2020, 7, 3853-3861.	2.3	15
8	Methoxy-substituted bis-tridentate iridium(<scp>iii</scp>) phosphors and fabrication of blue organic light emitting diodes. Journal of Materials Chemistry C, 2020, 8, 13590-13602.	2.7	14
9	Quantitative calculations of the non-radiative rate of phosphorescent Ir(<scp>iii</scp>) complexes. Physical Chemistry Chemical Physics, 2020, 22, 27348-27356.	1.3	9
10	Realization of Highly Efficient Red Phosphorescence from Bis-Tridentate Iridium(III) Phosphors. Inorganic Chemistry, 2019, 58, 10944-10954.	1.9	33
11	Bisâ€tridentate Ir ^{III} Phosphors Bearing Two Fused Fiveâ€Sixâ€Membered Metallacycles: A Strategy to Improved Photostability of Blue Emitters. Chemistry - A European Journal, 2019, 25, 15375-15386.	1.7	27
12	Nonradiative Decay and Stability of <i>N</i> -Heterocyclic Carbene Iridium(III) Complexes. Inorganic Chemistry, 2018, 57, 8881-8889.	1.9	31
13	Effect of n-propyl substituents on the emission properties of blue phosphorescent iridium(iii) complexes. Journal of Chemical Physics, 2017, 146, 174305.	1.2	5
14	Aggregates of diketopyrrolopyrrole dimers in solution. Dyes and Pigments, 2017, 136, 678-685.	2.0	13
15	Bond Fission and Non-Radiative Decay in Iridium(III) Complexes. Inorganic Chemistry, 2016, 55, 5266-5273.	1.9	49
16	Frozen-Density Embedding Strategy for Multilevel Simulations of Electronic Structure. Chemical Reviews, 2015, 115, 5891-5928.	23.0	258
17	How to choose the frozen density in Frozen-Density Embedding Theory-based numerical simulations of local excitations?. Theoretical Chemistry Accounts, 2014, 133, 1.	0.5	39
18	Spectral Tuning of Rhodopsin and Visual Cone Pigments. Journal of the American Chemical Society, 2014, 136, 2723-2726.	6.6	43

XIUWEN ZHOU

#	Article	IF	CITATIONS
19	Non-uniform Continuum Model for Solvated Species Based on Frozen-Density Embedding Theory: The Study Case of Solvatochromism of Coumarin 153. Chimia, 2014, 68, 609.	0.3	3
20	First-principles simulation of the absorption bands of fluorenone in zeolite L. Physical Chemistry Chemical Physics, 2013, 15, 159-167.	1.3	38
21	Multi-scale modelling of solvatochromic shifts from frozen-density embedding theory with non-uniform continuum model of the solvent: the coumarin 153 case. Physical Chemistry Chemical Physics, 2011, 13, 10565.	1.3	30
22	First-principles study of LiBaF3 crystals containing interstitial fluoride. Current Applied Physics, 2010, 10, 1286-1289.	1.1	3
23	First principle studies on the electronic structures and absorption spectra in KMgF3 crystal with fluorine vacancy. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 2403-2407.	0.6	9
24	First-principles study on the F-type color centers in LiBaF3 crystals. Physica B: Condensed Matter, 2010, 405, 932-935.	1.3	2
25	Study on the electronic structures and the optical properties of the Mg-doped LiBaF3 crystal. Physica B: Condensed Matter, 2010, 405, 1759-1762.	1.3	2
26	Electronic structure and optical properties of CdWO4 with oxygen vacancy studied from first principles. Solid State Communications, 2010, 150, 5-8.	0.9	19
27	First-principles study of cadmium vacancy in CdWO4 crystal. Solid State Sciences, 2009, 11, 2071-2074.	1.5	10
28	Study of the electronic structures of oxygen doped in LiBaF3 crystal. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 2467-2470.	0.6	2
29	Multi-Redox Responsive Behavior in a Mixed-Valence Semiconducting Framework Based on Bis-[1,2,5]-thiadiazolo-tetracyanoquinodimethane. Journal of the American Chemical Society, 0, , .	6.6	5