Anuradha Mishra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5960675/publications.pdf

Version: 2024-02-01

279701 1,687 65 23 citations h-index papers

g-index 67 67 67 1705 docs citations times ranked citing authors all docs

289141

40

#	Article	IF	CITATIONS
1	Influence of particle size on physical, mechanical, thermal, and morphological properties of tamarind-fenugreek mucilage biodegradable films. Polymer Bulletin, 2023, 80, 3119-3133.	1.7	12
2	Cationic dye removal using a newer material fabricated by Taro Mucilage-g-PLA and Organobentonite clay. Materials Today: Proceedings, 2021, 34, 569-574.	0.9	2
3	Ionic liquids: From a solvent for polymeric reactions to the monomers for poly(ionic liquids). Journal of Molecular Liquids, 2021, 335, 116540.	2.3	39
4	Recent advances on nano-adsorbents and nanomembranes for the remediation of water. Journal of Cleaner Production, 2021, 322, 129051.	4.6	53
5	Effect of Different Grinding Processes on Powder Characteristics of Tamarind Seeds. Agricultural Research, 2020, 9, 262-269.	0.9	12
6	Ferromagnetic xyloglucan–Fe3O4 green nanocomposites: sonochemical synthesis, characterization and application in removal of methylene blue from water. Environmental Sustainability, 2020, 3, 15-22.	1.4	6
7	Emerging application of robust data envelopment analysis for optimization of graft copolymerization of poly(2-hydroxyethyl methacrylate) to Tamarindus indica seed polysaccharide. International Journal of Biological Macromolecules, 2020, 164, 3858-3863.	3.6	2
8	Data Envelopment Analysis and Decision Maker Models: An Innovative Approach for Optimization of Reaction Variables of Graft Copolymerization of Poly(butyl acrylate) to Tamarind Seed Xyloglucan. Macromolecular Theory and Simulations, 2020, 29, 2000051.	0.6	1
9	Evaluation of thermal degradation and melt crystallization behavior of taro mucilage and its graft copolymer with poly(lactide). SN Applied Sciences, 2019, 1, 1.	1.5	4
10	Quantification of Optimal Reaction Parameters for the Synthesis of a Polysaccharideâ€Based Graft Copolymers Using Combined Shannon's Entropy and Data Envelopment Analysis. Starch/Staerke, 2019, 71, 1900126.	1.1	2
11	A sustainable process for adsorptive removal of methylene blue onto a food grade mucilage: kinetics, thermodynamics, and equilibrium evaluation. International Journal of Phytoremediation, 2019, 21, 1122-1129.	1.7	18
12	Polyvinylidenefluoride/Polymethylmethacrylate/Polyphosphazene/Lithium Tantalate Composites: Synthesis and Characterization. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 624-630.	1.9	2
13	Synthesis, chemistry, physicochemical properties and industrial applications of amino acid surfactants: A review. Comptes Rendus Chimie, 2018, 21, 112-130.	0.2	126
14	Evaluation of thermal, morphological and flame-retardant properties of thermoplastic polyurethane/polyphosphazene blends. Polymer Bulletin, 2018, 75, 2415-2430.	1.7	27
15	Isolation, characterization, and microwave assisted surface modification of Colocasia esculenta (L.) Schott mucilage by grafting polylactide. International Journal of Biological Macromolecules, 2018, 119, 1090-1097.	3 . 6	21
16	Determination of Pentacyclic Triterpenes from <i>Betula utilis</i> by High-Performance Liquid Chromatography and High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy. Analytical Letters, 2017, 50, 233-242.	1.0	3
17	Peptide nucleic acids: Advanced tools for biomedical applications. Journal of Biotechnology, 2017, 259, 148-159.	1.9	127
18	Microwave synthesis, characterization, and bio-efficacy of novel halogenated Schiff bases. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2016, 51, 558-570.	0.7	4

#	Article	IF	CITATIONS
19	Metabolic profiling of Commiphora wightii (guggul) reveals a potential source for pharmaceuticals and nutraceuticals. Phytochemistry, 2015, 110, 29-36.	1.4	49
20	Adsorption of Hexavalent Chromium Ion from Aqueous Solutions on Psyllium Mucilage and Cross-Linked Psyllium Mucilage Beads. Current Environmental Engineering, 2015, 1, 191-198.	0.6	2
21	Application of dried plant biomass as novel low-cost adsorbent for removal of cadmium from aqueous solution. International Journal of Environmental Science and Technology, 2014, 11, 1043-1050.	1.8	44
22	Tamarind Seed Xyloglucan: A Food Hydrocolloid for Water Remediation. Journal of Biobased Materials and Bioenergy, 2013, 7, 12-18.	0.1	6
23	Greening the Blue: How the World is Addressing the Challenge of Green Remediation of Water. RSC Green Chemistry, 2013, , 1-10.	0.0	3
24	Zeolites in Wastewater Treatment. RSC Green Chemistry, 2013, , 82-104.	0.0	3
25	Nanomaterials for Water Remediation. RSC Green Chemistry, 2013, , 135-154.	0.0	3
26	Applications of Ionic Liquids in Metal Extraction. RSC Green Chemistry, 2013, , 155-180.	0.0	7
27	Graft copolymers of xyloglucan and methyl methacrylate. Carbohydrate Polymers, 2012, 87, 1899-1904.	5.1	33
28	Tamarind xyloglucan: a polysaccharide with versatile application potential. Journal of Materials Chemistry, 2009, 19, 8528.	6.7	133
29	Synthesis of graft copolymers of xyloglucan and acrylonitrile. Polymers for Advanced Technologies, 2008, 19, 99-104.	1.6	22
30	Modification of Okra mucilage with acrylamide: Synthesis, characterization and swelling behavior. Carbohydrate Polymers, 2008, 72, 608-615.	5.1	65
31	OKRA (HIBISCUS ESCULENTUS) AND FENUGREEK (TRIGONELLA FOENUM GRACEUM) MUCILAGE: CHARACTERIZATION AND APPLICATION AS FLOCCULANTS FOR TEXTILE EFFLUENT TREATMENTS. Chinese Journal of Polymer Science (English Edition), 2008, 26, 679.	2.0	20
32	Copolymerization ofn-butylacrylate with methylmethacrylate by a novel photoinitiator, 1-(bromoacetyl)pyrene. International Journal of Chemical Kinetics, 2007, 39, 261-267.	1.0	5
33	Polyacrylonitrile-grafted Okra mucilage: A renewable reservoir to polymeric materials. Carbohydrate Polymers, 2007, 68, 95-100.	5.1	32
34	Curcumin, a natural colorant as initiator for photopolymerization of styrene: kinetics and mechanism. Colloid and Polymer Science, 2007, 285, 1109-1117.	1.0	17
35	Graft Copolymerization of Polyacrylamide onto Tamarind Mucilage. Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 315-326.	1.2	15
36	Polymerization of nâ€Butyl Acrylate Photoinitiated by 1â€(Bromoacetyl)pyrene and its Arsonium Salt. Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 955-966.	1.2	1

3

#	Article	IF	Citations
37	Removal of Dyes by Biodegradable Flocculants: A Lab Scale Investigation. Separation Science and Technology, 2006, 41, 583-593.	1.3	19
38	Biodegradable graft copolymers of fenugreek mucilage and polyacrylamide: A renewable reservoir to biomaterials. Carbohydrate Polymers, 2006, 65, 58-63.	5.1	35
39	The flocculation performance of Tamarindus mucilage in relation to removal of vat and direct dyes. Bioresource Technology, 2006, 97, 1055-1059.	4.8	64
40	Removal of sulphate and phosphate from aqueous solutions using a food grade polysaccharide as flocculant. Colloid and Polymer Science, 2006, 284, 443-448.	1.0	12
41	Tamarindus indica mucilage and its acrylamide-grafted copolymer as flocculants for removal of dyes. Colloid and Polymer Science, 2006, 285, 161-168.	1.0	17
42	1-(Bromoacetyl)pyrene, a novel photoinitiator for the copolymerization of styrene and acrylonitrile. Colloid and Polymer Science, 2006, 285, 397-404.	1.0	2
43	1-(Bromoacetyl)pyrene, a novel photoinitiator for the copolymerization of styrene and methylmethacrylate. Radiation Physics and Chemistry, 2006, 75, 1093-1100.	1.4	33
44	Methylmethacrylate polymerization photoinitiated by 1-(bromoacetyl)pyrene. Journal of Applied Polymer Science, 2006, 99, 920-926.	1.3	3
45	1-(bromoacetyl)pyrene and its arsonium salt as novel photoinitiators for styrene polymerization. Journal of Applied Polymer Science, 2006, 101, 1793-1798.	1.3	0
46	Copolymerization ofn-butylacrylate with styrene by a novel photoinitiator, 1-(bromoacetyl)pyrene. Journal of Applied Polymer Science, 2006, 102, 3233-3239.	1.3	2
47	Synthesis and characterization of polyacrylamide grafted copolymers of Kundoor mucilage. Journal of Applied Polymer Science, 2005, 98, 1186-1191.	1.3	23
48	Flocculation behaviour of model textile wastewater treated with a food grade polysaccharide. Journal of Hazardous Materials, 2005, 118, 213-217.	6.5	128
49	Title is missing!. Chinese Journal of Polymer Science (English Edition), 2005, 23, 113.	2.0	2
50	Curcumin, A Novel Natural Photoinitiator for the Copolymerization of Styrene and Methylmethacrylate. Journal of Macromolecular Science - Pure and Applied Chemistry, 2005, 42, 1667-1678.	1.2	24
51	Polyacrylonitrile-grafted Plantago psyllium mucilage for the removal of suspended and dissolved solids from tannery effluent. Colloid and Polymer Science, 2004, 282, 300-303.	1.0	19
52	Use of polyacrylamide-grafted Plantago psyllium mucilage as a flocculant for treatment of textile wastewater. Colloid and Polymer Science, 2004, 282, 722-727.	1.0	51
53	Fenugreek mucilage for solid removal from tannery effluent. Reactive and Functional Polymers, 2004, 59, 99-104.	2.0	26
54	Fenugreek mucilage as a flocculating agent for sewage treatment. Colloid and Polymer Science, 2003, 281, 164-167.	1.0	21

#	Article	lF	CITATION
55	P. psyllium-g-polyacrylonitrile: synthesis and characterization. Colloid and Polymer Science, 2003, 281, 187-189.	1.0	40
56	Effect of diluents on the curing behavior of vinyl ester resin. Journal of Applied Polymer Science, 2003, 87, 1948-1951.	1.3	22
57	Effect of diluents on the decomposition behavior of vinyl ester resin. Journal of Applied Polymer Science, 2003, 87, 1952-1956.	1.3	10
58	UTILIZATION OF OKRA GUM FOR TREATMENT OF TANNERY EFFLUENT. International Journal of Polymeric Materials and Polymeric Biomaterials, 2003, 52, 1049-1057.	1.8	34
59	Decomposition behavior of vinyl ester resins prepared in presence of tertiary amines. Polymer-Plastics Technology and Engineering, 2002, 41, 327-340.	1.9	2
60	Plantago psyllium-Grafted-Polyacrylonitrileâ€"Synthesis, Characterization and Its Use in Suspended and Dissolved Solid Removal from Textile Effluent. Water Quality Research Journal of Canada, 2002, 37, 371-378.	1.2	20
61	Flocculation of Textile Wastewater by Plantago psyllium Mucilage. Macromolecular Materials and Engineering, 2002, 287, 592-596.	1.7	37
62	P.psyllium-g-polyacrylamide: Synthesis and characterization. Polymer Bulletin, 2002, 48, 439-444.	1.7	25
63	Title is missing!. Journal of Polymer Research, 2002, 9, 69-73.	1.2	25
64	Study on Flocculation Efficiency of Okra Gum in Sewage Waste Water. Macromolecular Materials and Engineering, 2001, 286, 560-563.	1.7	50
65	Curing studies on vinyl ester resin using acrylates as reactive diluents. Polymer International, 1992, 28, 189-192.	1.6	19