List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5959813/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nature Chemistry, 2011, 3, 489-492.	6.6	1,090
2	Ceria Catalysts at Nanoscale: How Do Crystal Shapes Shape Catalysis?. ACS Catalysis, 2017, 7, 4716-4735.	5.5	526
3	Efficient Production of Hydrogen over Supported Cobalt Catalysts from Ethanol Steam Reforming. Journal of Catalysis, 2002, 209, 306-317.	3.1	506
4	Shape-Dependent Activity of Ceria in Soot Combustion. ACS Catalysis, 2014, 4, 172-181.	5.5	377
5	Nanophase Fluorite-Structured CeO2–ZrO2Catalysts Prepared by High-Energy Mechanical Milling. Journal of Catalysis, 1997, 169, 490-502.	3.1	374
6	Nanofaceted PdO Sites in PdCe Surface Superstructures: Enhanced Activity in Catalytic Combustion of Methane. Angewandte Chemie - International Edition, 2009, 48, 8481-8484.	7.2	256
7	Surface-structure sensitivity of CO oxidation over polycrystalline ceria powders. Journal of Catalysis, 2005, 234, 88-95.	3.1	252
8	CO-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts. Applied Catalysis B: Environmental, 2003, 43, 355-369.	10.8	248
9	The Synthesis and Characterization of Mesoporous High-Surface Area Ceria Prepared Using a Hybrid Organic/Inorganic Route. Journal of Catalysis, 1998, 178, 299-308.	3.1	227
10	CO and CO2 methanation over Ni catalysts supported on CeO2, Al2O3 and Y2O3 oxides. Applied Catalysis B: Environmental, 2020, 264, 118494.	10.8	208
11	Effect of sodium addition on the performance of Co–ZnO-based catalysts for hydrogen production from bioethanol. Journal of Catalysis, 2004, 222, 470-480.	3.1	197
12	Influence of the support on surface rearrangements of bimetallic nanoparticles in real catalysts. Science, 2014, 346, 620-623.	6.0	188
13	Surface Faceting and Reconstruction of Ceria Nanoparticles. Angewandte Chemie - International Edition, 2017, 56, 375-379.	7.2	185
14	In situ DRIFT-mass spectrometry study of the ethanol steam-reforming reaction over carbonyl-derived Co/ZnO catalysts. Journal of Catalysis, 2004, 227, 556-560.	3.1	172
15	Soot combustion over silver-supported catalysts. Applied Catalysis B: Environmental, 2009, 91, 489-498.	10.8	161
16	Direct production of hydrogen from ethanolic aqueous solutions over oxide catalysts. Chemical Communications, 2001, , 641-642.	2.2	160
17	Review of the Decomposition of Ammonia to Generate Hydrogen. Industrial & Engineering Chemistry Research, 2021, 60, 18560-18611.	1.8	159
18	The effect of doping CeO2 with zirconium in the oxidation of isobutane. Applied Catalysis A: General, 1996, 139, 161-173.	2.2	155

#	Article	IF	CITATIONS
19	NiSn bimetallic nanoparticles as stable electrocatalysts for methanol oxidation reaction. Applied Catalysis B: Environmental, 2018, 234, 10-18.	10.8	142
20	In situ studies of CeO2-supported Pt, Ru, and Pt–Ru alloy catalysts for the water–gas shift reaction: Active phases and reaction intermediates. Journal of Catalysis, 2012, 291, 117-126.	3.1	133
21	Low-temperature steam-reforming of ethanol over ZnO-supported Ni and Cu catalysts. Catalysis Today, 2006, 116, 361-366.	2.2	132
22	In situ magnetic characterisation of supported cobalt catalysts under steam-reforming of ethanol. Applied Catalysis A: General, 2003, 243, 261-269.	2.2	131
23	In Situ Electrochemical Oxidation of Cu ₂ S into CuO Nanowires as a Durable and Efficient Electrocatalyst for Oxygen Evolution Reaction. Chemistry of Materials, 2019, 31, 7732-7743.	3.2	131
24	Synthesis of Several Isomeric Tetrathiafulvalene .piElectron Donors with Peripheral Sulfur Atoms. A Study of Their Radical Cations. Journal of Organic Chemistry, 1994, 59, 3307-3313.	1.7	129
25	Tubular CoFeP@CN as a Mott–Schottky Catalyst with Multiple Adsorption Sites for Robust Lithiumâ"Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2100432.	10.2	125
26	Propene epoxidation over TiO2-supported Au–Cu alloy catalysts prepared from thiol-capped nanoparticles. Journal of Catalysis, 2008, 258, 187-198.	3.1	124
27	Catalytic ammonia decomposition for hydrogen production on Ni, Ru and Ni Ru supported on CeO2. International Journal of Hydrogen Energy, 2019, 44, 12693-12707.	3.8	121
28	Transformation of Co3O4during Ethanol Steam-Re-forming. Activation Process for Hydrogen Production. Chemistry of Materials, 2004, 16, 3573-3578.	3.2	120
29	Outstanding Methane Oxidation Performance of Palladiumâ€Embedded Ceria Catalysts Prepared by a Oneâ€Step Dry Ballâ€Milling Method. Angewandte Chemie - International Edition, 2018, 57, 10212-10216.	7.2	117
30	ZnSe/N-Doped Carbon Nanoreactor with Multiple Adsorption Sites for Stable Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 15492-15504.	7.3	114
31	Chemical abundances determined from meteor spectra: I. Ratios of the main chemical elements. Meteoritics and Planetary Science, 2003, 38, 1283-1294.	0.7	111
32	Supported Pt–Sn catalysts highly selective for isobutane dehydrogenation: preparation, characterization and catalytic behavior. Applied Catalysis A: General, 1999, 189, 77-86.	2.2	110
33	Structure and morphology of Pd/Al2O3 and Pd/CeO2/Al2O3 combustion catalysts in Pd–PdO transformation hysteresis. Applied Catalysis A: General, 2010, 390, 1-10.	2.2	110
34	Steam reforming of ethanol at moderate temperature: Multifactorial design analysis of Ni/La2O3-Al2O3, and Fe- and Mn-promoted Co/ZnO catalysts. Journal of Power Sources, 2007, 169, 158-166.	4.0	103
35	Ethanol steam reforming and water gas shift over Co/ZnO catalytic honeycombs doped with Fe, Ni, Cu, Cr and Na. International Journal of Hydrogen Energy, 2010, 35, 7690-7698.	3.8	103
36	Hydrogen production by Tuning the Photonic Band Gap with the Electronic Band Gap of TiO2. Scientific Reports, 2013, 3, 2849.	1.6	102

#	Article	IF	CITATIONS
37	Relationships between Structural/Morphological Modifications and Oxygen Storage–Redox Behavior of Silica-Doped Ceria. Journal of Catalysis, 2000, 194, 461-478.	3.1	101
38	Microcalorimetric and Infrared Studies of Ethanol and Acetaldehyde Adsorption to Investigate the Ethanol Steam Reforming on Supported Cobalt Catalysts. Journal of Physical Chemistry B, 2005, 109, 10813-10819.	1.2	101
39	Fast and efficient hydrogen generation catalyzed by cobalt talc nanolayers dispersed in silica aerogel. Journal of Materials Chemistry, 2010, 20, 4875.	6.7	101
40	Performance comparison of Ni/TiO2 and Au/TiO2 photocatalysts for H2 production in different alcohol-water mixtures. Journal of Catalysis, 2018, 367, 27-42.	3.1	97
41	Unusual Oxygen Storage/Redox Behavior of High-Surface-Area Ceria Prepared by a Surfactant-Assisted Route. Chemistry of Materials, 1997, 9, 2676-2678.	3.2	96
42	The strength of cometary meteoroids: clues to the structure and evolution of comets. Monthly Notices of the Royal Astronomical Society, 2006, 372, 655-660.	1.6	96
43	Conversion of glycerol over 10%Ni/γ-Al2O3 catalyst. Applied Catalysis B: Environmental, 2014, 147, 464-480.	10.8	94
44	A novel and simple route to catalysts with a high oxygen storage capacity: the direct room-temperature synthesis of CeO2–ZrO2solid solutions. Journal of the Chemical Society Chemical Communications, 1995, , 2181-2182.	2.0	93
45	Recent Advances in the Catalytic Production of Platform Chemicals from Holocellulosic Biomass. ChemCatChem, 2019, 11, 2022-2042.	1.8	92
46	Atomically dispersed Fe in a C ₂ N Based Catalyst as a Sulfur Host for Efficient Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2003507.	10.2	91
47	NbSe ₂ Meets C ₂ N: A 2Dâ€2D Heterostructure Catalysts as Multifunctional Polysulfide Mediator in Ultraâ€Longâ€Life Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2101250.	10.2	89
48	Propene epoxidation by nitrous oxide over Au–Cu/TiO2 alloy catalysts. Journal of Molecular Catalysis A, 2007, 274, 159-168.	4.8	87
49	Photoreaction of ethanol on Au/TiO2 anatase: Comparing the micro to nanoparticle size activities of the support for hydrogen production. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 250-255.	2.0	87
50	A High Conductivity 1D π–d Conjugated Metal–Organic Framework with Efficient Polysulfide Trappingâ€Diffusion atalysis in Lithium–Sulfur Batteries. Advanced Materials, 2022, 34, e2108835.	11.1	86
51	A Phenomenological Study of the Metal–Oxide Interface: The Role of Catalysis in Hydrogen Production from Renewable Resources. ChemSusChem, 2008, 1, 905-910.	3.6	85
52	Colloidal Ni–Co–Sn nanoparticles as efficient electrocatalysts for the methanol oxidation reaction. Journal of Materials Chemistry A, 2018, 6, 22915-22924.	5.2	85
53	Selective Methanolâ€ŧoâ€Formate Electrocatalytic Conversion on Branched Nickel Carbide. Angewandte Chemie - International Edition, 2020, 59, 20826-20830.	7.2	83
54	Remarkable Carbon Dioxide Hydrogenation to Ethanol on a Palladium/Iron Oxide Singleâ€Atom Catalyst. ChemCatChem, 2018, 10, 2365-2369.	1.8	82

#	Article	IF	CITATIONS
55	The effect of CeO2 on the dynamics of Pd–PdO transformation over Pd/Al2O3 combustion catalysts. Catalysis Communications, 2007, 8, 1263-1266.	1.6	81
56	Bimetallic Silica-Supported Catalysts Based on Niâ^'Sn, Pdâ^'Sn, and Ptâ^'Sn as Materials in the CO Oxidation Reaction. Chemistry of Materials, 1998, 10, 1333-1342.	3.2	80
57	In Situ Elucidation of the Active State of Co–CeO _{<i>x</i>} Catalysts in the Dry Reforming of Methane: The Important Role of the Reducible Oxide Support and Interactions with Cobalt. ACS Catalysis, 2018, 8, 3550-3560.	5.5	80
58	Cobalt hydrotalcites as catalysts for bioethanol steam reforming. The promoting effect of potassium on catalyst activity and long-term stability. Applied Catalysis B: Environmental, 2012, 127, 59-67.	10.8	77
59	Methanol steam reforming behavior of copper impregnated over CeO 2 –ZrO 2 derived from aÂsurfactant assisted coprecipitation route. International Journal of Hydrogen Energy, 2015, 40, 10463-10479.	3.8	77
60	Defect-induced strategies for the creation of highly active hydrotalcites in base-catalyzed reactions. Journal of Catalysis, 2007, 252, 249-257.	3.1	76
61	Autothermal generation of hydrogen from ethanol in a microreactor. International Journal of Hydrogen Energy, 2008, 33, 1827-1833.	3.8	76
62	Higher activity of Diesel soot oxidation over polycrystalline ceria and ceria–zirconia solid solutions from more reactive surface planes. Catalysis Today, 2012, 197, 119-126.	2.2	76
63	CO oxidation and COPrOx over preformed Au nanoparticles supported over nanoshaped CeO2. Applied Catalysis B: Environmental, 2016, 197, 47-55.	10.8	76
64	Graphene-supported palladium phosphide PdP2 nanocrystals for ethanol electrooxidation. Applied Catalysis B: Environmental, 2019, 242, 258-266.	10.8	76
65	Detection of sporadic impact flashes on the Moon: Implications for the luminous efficiency of hypervelocity impacts and derived terrestrial impact rates. Icarus, 2006, 184, 319-326.	1.1	74
66	First use of macroporous silicon loaded with catalyst film for a chemical reaction: A microreformer for producing hydrogen from ethanol steam reforming. Journal of Catalysis, 2008, 255, 228-233.	3.1	74
67	A luminescent hydrogel based on a new Au(<scp>i</scp>) complex. Chemical Communications, 2013, 49, 72-74.	2.2	73
68	Mn ₃ O ₄ @CoMn ₂ O ₄ –Co _{<i>x</i>} O _{<i>y Partial Cation Exchange Synthesis and Electrocatalytic Properties toward the Oxygen Reduction and Evolution Reactions. ACS Applied Materials & Interfaces, 2016, 8, 17435-17444.</i>}	4.0	>Nanoparticl 72
69	Room temperature oxidation of formaldehyde on Pt-based catalysts: A comparison between ceria and other supports (TiO2, Al2O3 and ZrO2). Catalysis Today, 2015, 253, 163-171.	2.2	71
70	Visible Light-Driven H ₂ Production over Highly Dispersed Ruthenia on Rutile TiO ₂ Nanorods. ACS Catalysis, 2016, 6, 407-417.	5.5	71
71	Dynamic photocatalytic hydrogen production from ethanol–water mixtures in an optical fiber honeycomb reactor loaded with Au/TiO2. Journal of Catalysis, 2014, 309, 460-467.	3.1	70
72	Catalytic monoliths for ethanol steam reforming. Catalysis Today, 2008, 138, 187-192.	2.2	69

#	Article	IF	CITATIONS
73	Bulbous tracks arising from hypervelocity capture in aerogel. Meteoritics and Planetary Science, 2008, 43, 75-86.	0.7	69
74	Enhanced photocatalytic degradation of methylene blue: Preparation of TiO2/reduced graphene oxide nanocomposites by direct sol-gel and hydrothermal methods. Materials Research Bulletin, 2017, 95, 578-587.	2.7	68
75	Boosted selectivity toward high glycerol tertiary butyl ethers by microwave-assisted sulfonic acid-functionalization of SBA-15 and beta zeolite. Journal of Catalysis, 2012, 290, 202-209.	3.1	67
76	Computational fluid dynamics simulation of ethanol steam reforming in catalytic wall microchannels. Chemical Engineering Journal, 2011, 167, 603-609.	6.6	66
77	Magnetite-supported palladium single-atoms do not catalyse the hydrogenation of alkenes but small clusters do. Catalysis Science and Technology, 2016, 6, 4081-4085.	2.1	66
78	Catalytic ammonia decomposition over Ni-Ru supported on CeO2 for hydrogen production: Effect of metal loading and kinetic analysis. Applied Catalysis B: Environmental, 2021, 286, 119896.	10.8	66
79	Ethanol reforming processes over ZnO-supported palladium catalysts: Effect of alloy formation. Journal of Molecular Catalysis A, 2006, 250, 44-49.	4.8	65
80	Improved high temperature stability of NH3-SCR catalysts based on rare earth vanadates supported on TiO2WO3SiO2. Catalysis Today, 2012, 184, 227-236.	2.2	65
81	Origin of High Activity and Selectivity of CuO/CeO ₂ Catalysts Prepared by Solution Combustion Synthesis in CO-PROX Reaction. Journal of Physical Chemistry C, 2016, 120, 13039-13048.	1.5	65
82	Pd ₂ Sn [010] nanorods as a highly active and stable ethanol oxidation catalyst. Journal of Materials Chemistry A, 2016, 4, 16706-16713.	5.2	65
83	Unraveling the Chemical State of Cobalt in Co-Based Catalysts during Ethanol Steam Reforming: an in Situ Study by Near Ambient Pressure XPS and XANES. ACS Catalysis, 2018, 8, 9625-9636.	5.5	64
84	Selective hydrodeoxygenation of biomass derived 5-hydroxymethylfurfural over silica supported iridium catalysts. Applied Catalysis B: Environmental, 2019, 241, 270-283.	10.8	64
85	Photocatalyzed Hydrogen Evolution from Water by a Composite Catalyst of NH ₂ â€MILâ€125(Ti) and Surface Nickel(II) Species. Chemistry - A European Journal, 2016, 22, 13894-13899.	1.7	62
86	Stability of Pd ₃ Pb Nanocubes during Electrocatalytic Ethanol Oxidation. Chemistry of Materials, 2020, 32, 2044-2052.	3.2	62
87	Influence of Pt particle size and reaction phase on the photocatalytic performances of ultradispersed Pt/TiO2 catalysts for hydrogen evolution. Journal of Catalysis, 2019, 375, 155-163.	3.1	61
88	Methane oxidation activity and nanoscale characterization of Pd/CeO2 catalysts prepared by dry milling Pd acetate and ceria. Applied Catalysis B: Environmental, 2021, 282, 119567.	10.8	61
89	Hydrodechlorination of trichloroethylene on noble metal promoted Cu-hydrotalcite-derived catalysts. Journal of Catalysis, 2009, 263, 239-246.	3.1	59
90	An efficient and reusable catalyst based on Pd/CeO2 for the room temperature aerobic Suzuki–Miyaura reaction in water/ethanol. Journal of Molecular Catalysis A, 2010, 315, 197-204.	4.8	59

#	Article	IF	CITATIONS
91	Bio-ethanol steam reforming and autothermal reforming in 3-μm channels coated with RhPd/CeO2 for hydrogen generation. Chemical Engineering and Processing: Process Intensification, 2013, 64, 31-37.	1.8	59
92	Platinum–Tin Catalysts Supported on Silica Highly Selective forn-Hexane Dehydrogenation. Journal of Catalysis, 1997, 166, 44-52.	3.1	58
93	The Villalbeto de la Peña meteorite fall: I. Fireball energy, meteorite recovery, strewn field, and petrography. Meteoritics and Planetary Science, 2005, 40, 795-804.	0.7	58
94	Ethanol steam reforming for hydrogen generation over structured catalysts. International Journal of Hydrogen Energy, 2013, 38, 4418-4428.	3.8	58
95	A comparative study of water gas shift reaction over gold and platinum supported on ZrO2 and CeO2–ZrO2. Applied Catalysis B: Environmental, 2009, 88, 272-282.	10.8	57
96	Colloidal Ni _{2â^'x} Co _x P nanocrystals for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 11453-11462.	5.2	57
97	Solution-Processed Ultrathin SnS ₂ –Pt Nanoplates for Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2019, 11, 6918-6926.	4.0	57
98	Structural and Morphological Investigation of Ceria-Promoted Al2O3under Severe Reducing/Oxidizing Conditions. Journal of Physical Chemistry B, 2005, 109, 11110-11118.	1.2	56
99	Three-dimensional ruthenium-doped TiO ₂ sea urchins for enhanced visible-light-responsive H ₂ production. Physical Chemistry Chemical Physics, 2016, 18, 15972-15979.	1.3	56
100	SnP nanocrystals as anode materials for Na-ion batteries. Journal of Materials Chemistry A, 2018, 6, 10958-10966.	5.2	56
101	Crotonaldehyde hydrogenation over alumina- and silica-supported Pt–Sn catalysts of different composition. In situ DRIFT study. Physical Chemistry Chemical Physics, 2000, 2, 3063-3069.	1.3	54
102	Ambient Pressure Photoemission Spectroscopy Reveals the Mechanism of Carbon Soot Oxidation in Ceriaâ€Based Catalysts. ChemCatChem, 2016, 8, 2748-2751.	1.8	54
103	Catalytic walls and micro-devices for generating hydrogen by low temperature steam reforming of ethanol. Catalysis Today, 2009, 143, 32-37.	2.2	53
104	Cobalt hydrotalcite for the steam reforming of ethanol with scarce carbon production. RSC Advances, 2012, 2, 2946.	1.7	52
105	Study of Pt–CeO2 interaction and the effect in the selective hydrodechlorination of trichloroethylene. Applied Catalysis B: Environmental, 2009, 87, 84-91.	10.8	51
106	Compositionally tuned NixSn alloys as anode materials for lithium-ion and sodium-ion batteries with a high pseudocapacitive contribution. Electrochimica Acta, 2019, 304, 246-254.	2.6	51
107	Effect of Ni particle size on the production of renewable methane from CO2 over Ni/CeO2 catalyst. Journal of Energy Chemistry, 2021, 61, 602-611.	7.1	51
108	Phase Engineering of Defective Copper Selenide toward Robust Lithium–Sulfur Batteries. ACS Nano, 2022, 16, 11102-11114.	7.3	50

#	Article	IF	CITATIONS
109	Influence of Metallic Precursors on the Preparation of Silica-Supported Ptsn Alloy: Characterization and Reactivity in the Catalytic Activation of CO2. Journal of Catalysis, 1995, 156, 139-146.	3.1	49
110	Ceria–Zirconia Particles Wrapped in a 2D Carbon Envelope: Improved Lowâ€Temperature Oxygen Transfer and Oxidation Activity. Angewandte Chemie - International Edition, 2015, 54, 14040-14043.	7.2	49
111	Influence of copper on nickel-based catalysts in the conversion of glycerol. Applied Catalysis B: Environmental, 2015, 166-167, 166-180.	10.8	49
112	The Villalbeto de la Peña meteorite fall: II. Determination of atmospheric trajectory and orbit. Meteoritics and Planetary Science, 2006, 41, 505-517.	0.7	48
113	3D printed microstructured Au/TiO2 catalyst for hydrogen photoproduction. Applied Materials Today, 2019, 16, 265-272.	2.3	48
114	Techno-economic and exergy analysis of polygeneration plant for power and DME production with the integration of chemical looping CO2/H2O splitting. Energy Conversion and Management, 2019, 186, 200-219.	4.4	48
115	Phosphorous incorporation in Pd2Sn alloys for electrocatalytic ethanol oxidation. Nano Energy, 2020, 77, 105116.	8.2	48
116	Sulfonic acid-functionalized aerogels as high resistant to deactivation catalysts for the etherification of glycerol with isobutene. Applied Catalysis B: Environmental, 2013, 136-137, 287-293.	10.8	47
117	Combustion synthesized copper-ion substituted FeAl2O4 (Cu0.1Fe0.9Al2O4): A superior catalyst for methanol steam reforming compared to its impregnated analogue. Journal of Power Sources, 2016, 304, 319-331.	4.0	47
118	Chemical abundances determined from meteor spectra - II. Evidence for enlarged sodium abundances in meteoroids. Monthly Notices of the Royal Astronomical Society, 2004, 348, 802-810.	1.6	46
119	PdCu alloy nanoparticles on alumina as selective catalysts for trichloroethylene hydrodechlorination to ethylene. Applied Catalysis A: General, 2013, 453, 130-141.	2.2	46
120	Pd ₂ Au ₃₆ (SR) ₂₄ cluster: structure studies. Nanoscale, 2015, 7, 17012-17019.	2.8	46
121	Influence of acid–base properties of calcined MgAl and CaAl layered double hydroxides on the catalytic glycerol etherification to short-chain polyglycerols. Chemical Engineering Journal, 2015, 264, 547-556.	6.6	46
122	Mixed iron–erbium vanadate NH3-SCR catalysts. Catalysis Today, 2015, 241, 159-168.	2.2	46
123	Ammonia decomposition over 3D-printed CeO2 structures loaded with Ni. Applied Catalysis A: General, 2020, 591, 117382.	2.2	46
124	Monodisperse CoSn and NiSn Nanoparticles Supported on Commercial Carbon as Anode for Lithium- and Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 4414-4422.	4.0	46
125	The formation of nanodomains of Ce6O11 in ceria catalyzed soot combustion. Journal of Catalysis, 2014, 312, 191-194.	3.1	45
126	Facing Seawater Splitting Challenges by Regeneration with Ni <i>â^'</i> Mo <i>â^'</i> Fe Bifunctional Electrocatalyst for Hydrogen and Oxygen Evolution. ChemSusChem, 2021, 14, 2872-2881.	3.6	45

#	Article	IF	CITATIONS
127	The influence of nano-architectured CeO supports in RhPd/CeO2 for the catalytic ethanol steam reforming reaction. Catalysis Today, 2015, 253, 99-105.	2.2	44
128	Treatment of saline produced water through photocatalysis using rGO-TiO2 nanocomposites. Catalysis Today, 2018, 315, 194-204.	2.2	44
129	Ligand Migration from Cluster to Support: A Crucial Factor for Catalysis by Thiolateâ€protected Gold Clusters. ChemCatChem, 2018, 10, 5372-5376.	1.8	44
130	The solid-state rearrangement of the Wells-Dawson K6P2W18O62�10H2O to a stable Keggin-type heteropolyanion phase: a catalyst for the selective oxidation of isobutane to isobutene. Catalysis Letters, 1996, 36, 75-79.	1.4	43
131	Support effect on the formation of the well-defined PtSn alloy from a Ptî—,Sn bimetallic complex. Catalytic properties in the activation of CO2. Journal of Molecular Catalysis A, 1997, 118, 101-111.	4.8	43
132	Reduction and Oxygen Storage Behavior of Noble Metals Supported on Silica-Doped Ceria. Journal of Catalysis, 2002, 211, 407-421.	3.1	43
133	Nature and location of cerium in Ce-loaded Y zeolites as revealed by HRTEM and spectroscopic techniques. Microporous and Mesoporous Materials, 2007, 100, 276-286.	2.2	43
134	Ethanol steam reforming and water gas shift reaction over Co–Mn/ZnO catalysts. Chemical Engineering Journal, 2009, 154, 267-273.	6.6	43
135	Enhanced Cu activity in catalytic ozonation of clofibric acid by incorporation into ammonium dawsonite. Applied Catalysis B: Environmental, 2011, 107, 9-17.	10.8	43
136	Hydrogen production from ethanol over Pd–Rh/CeO2 with a metallic membrane reactor. Catalysis Today, 2012, 193, 145-150.	2.2	43
137	Microwave-assisted synthesis of sulfonic acid-functionalized microporous materials for the catalytic etherification of glycerol with isobutene. Green Chemistry, 2013, 15, 2230.	4.6	43
138	Plasma surface modification of polymers for sensor applications. Journal of Materials Chemistry B, 2018, 6, 6515-6533.	2.9	43
139	Ceria-Based Catalysts Studied by Near Ambient Pressure X-ray Photoelectron Spectroscopy: A Review. Catalysts, 2020, 10, 286.	1.6	43
140	Reaction between H ₂ , CO, and H ₂ S over Fe, Ni metal in the solar nebula: Experimental evidence for the formation of sulfurâ€bearing organic molecules and sulfides. Meteoritics and Planetary Science, 2000, 35, 841-848.	0.7	42
141	Vapour phase hydrogenation of crotonaldehyde over magnesia-supported platinum–tin catalysts. Physical Chemistry Chemical Physics, 2001, 3, 1782-1788.	1.3	42
142	Kinetic analysis and CFD simulations of the photocatalytic production of hydrogen in silicone microreactors from water-ethanol mixtures. Applied Catalysis B: Environmental, 2017, 203, 210-217.	10.8	42
143	Ethanol steam reforming at very low temperature over cobalt talc in a membrane reactor. Catalysis Today, 2012, 193, 101-106.	2.2	41
144	A General Approach To Fabricate Fe ₃ O ₄ Nanoparticles Decorated with Pd, Au, and Rh: Magnetically Recoverable and Reusable Catalysts for Suzuki CC Crossâ€Coupling Reactions, Hydrogenation, and Sequential Reactions. Chemistry - A European Journal, 2013, 19, 11963-11974.	1.7	41

#	Article	IF	CITATIONS
145	Boosted CO2 reaction with methanol to yield dimethyl carbonate over Mg–Al hydrotalcite-silica lyogels. Chemical Communications, 2013, 49, 5489.	2.2	41
146	Durable ethanol steam reforming in a catalytic membrane reactor at moderate temperature over cobalt hydrotalcite. International Journal of Hydrogen Energy, 2014, 39, 10902-10910.	3.8	41
147	Silicone microreactors for the photocatalytic generation of hydrogen. Catalysis Today, 2016, 273, 106-111.	2.2	40
148	Co–SiO2 aerogel-coated catalytic walls for the generation of hydrogen. Catalysis Today, 2008, 138, 193-197.	2.2	39
149	Effect of the Annealing Atmosphere on Crystal Phase and Thermoelectric Properties of Copper Sulfide. ACS Nano, 2021, 15, 4967-4978.	7.3	39
150	Catalytic reduction of nitrates in water on Pt promoted Cu hydrotalcite-derived catalysts: Effect of the Pt–Cu alloy formation. Applied Catalysis B: Environmental, 2011, 110, 58-70.	10.8	38
151	The effect of Fe–Rh alloying on CO hydrogenation to C2+ oxygenates. Journal of Catalysis, 2015, 329, 87-94.	3.1	38
152	Comprehensive Study of All-Solid-State Z-Scheme Photocatalytic Systems of ZnO/Pt/CdZnS. ACS Omega, 2017, 2, 4828-4837.	1.6	38
153	Superior methanol electrooxidation performance of (110)-faceted nickel polyhedral nanocrystals. Journal of Materials Chemistry A, 2019, 7, 22036-22043.	5.2	38
154	Co–Sn Nanocrystalline Solid Solutions as Anode Materials in Lithiumâ€ l on Batteries with High Pseudocapacitive Contribution. ChemSusChem, 2019, 12, 1451-1458.	3.6	38
155	Asteroid 2002NY40 as a source of meteorite-dropping bolides. Monthly Notices of the Royal Astronomical Society, 2007, 382, 1933-1939.	1.6	37
156	A million-channel reformer on a fingertip: Moving down the scale in hydrogen production. International Journal of Hydrogen Energy, 2010, 35, 3472-3479.	3.8	37
157	From Au(i) organometallic hydrogels to well-defined Au(0) nanoparticles. Journal of Materials Chemistry C, 2013, 1, 5538.	2.7	37
158	Techno-economic and exergetic assessment of an oxy-fuel power plant fueled by syngas produced by chemical looping CO2 and H2O dissociation. Journal of CO2 Utilization, 2018, 27, 500-517.	3.3	37
159	Pd/TiO2-WO3 photocatalysts for hydrogen generation from water-methanol mixtures. Applied Surface Science, 2018, 455, 570-580.	3.1	37
160	<i>Operando</i> X-ray Absorption Spectroscopy Investigation of Photocatalytic Hydrogen Evolution over Ultradispersed Pt/TiO ₂ Catalysts. ACS Catalysis, 2020, 10, 12696-12705.	5.5	37
161	A Direct Z-Scheme for the Photocatalytic Hydrogen Production from a Water Ethanol Mixture on CoTiO ₃ /TiO ₂ Heterostructures. ACS Applied Materials & Interfaces, 2021, 13, 449-457.	4.0	37
162	Silica-supported PtSn alloy doped with Ga, In or, Tl. Journal of Molecular Catalysis A, 2003, 200, 251-259.	4.8	36

#	Article	IF	CITATIONS
163	Activity, durability and microstructural characterization of ex-nitrate and ex-chloride Pt/Ce0.56Zr0.44O2 catalysts for low temperature water gas shift reaction. Journal of Catalysis, 2010, 270, 285-298.	3.1	36
164	Pretreatment Effect on Pt/CeO ₂ Catalyst in the Selective Hydrodechlorination of Trichloroethylene. Journal of Physical Chemistry C, 2010, 114, 17675-17682.	1.5	36
165	Upscaling high activity oxygen evolution catalysts based on CoFe2O4 nanoparticles supported on nickel foam for power-to-gas electrochemical conversion with energy efficiencies above 80%. Applied Catalysis B: Environmental, 2019, 259, 118055.	10.8	35
166	Dynamic Reorganization of Bimetallic Nanoparticles under Reaction Depending on the Support Nanoshape: The Case of RhPd over Ceria Nanocubes and Nanorods under Ethanol Steam Reforming. ACS Catalysis, 2019, 9, 3641-3647.	5.5	35
167	Catalytic performance of zinc-supported copper and nickel catalysts in the glycerol hydrogenolysis. Journal of Energy Chemistry, 2020, 42, 185-194.	7.1	35
168	The Dynamic Structure of Au ₃₈ (SR) ₂₄ Nanoclusters Supported on CeO ₂ upon Pretreatment and CO Oxidation. ACS Catalysis, 2020, 10, 6144-6148.	5.5	35
169	Hydrogen production by steam reforming of dimethyl ether over Pd-based catalytic monoliths. Applied Catalysis B: Environmental, 2011, 101, 690-697.	10.8	34
170	Fe ₃ O ₄ @NiFe _{<i>x</i>} O _{<i>y</i>} Nanoparticles with Enhanced Electrocatalytic Properties for Oxygen Evolution in Carbonate Electrolyte. ACS Applied Materials & Interfaces, 2016, 8, 29461-29469.	4.0	34
171	Experimental analysis of a degraded open-cathode PEM fuel cell stack. International Journal of Hydrogen Energy, 2014, 39, 5378-5387.	3.8	33
172	The effect of milling parameters on the mechanochemical synthesis of Pd–CeO ₂ methane oxidation catalysts. Catalysis Science and Technology, 2019, 9, 4232-4238.	2.1	33
173	Porous NiTiO ₃ /TiO ₂ nanostructures for photocatatalytic hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 17053-17059.	5.2	33
174	Plasma-activated core-shell gold nanoparticle films with enhanced catalytic properties. Journal of Nanoparticle Research, 2008, 10, 537-542.	0.8	32
175	PdO hydrate as an efficient and recyclable catalyst for the Suzuki–Miyaura reaction in water/ethanol at room temperature. Catalysis Communications, 2011, 12, 563-567.	1.6	32
176	Ethanol steam reforming over cobalt talc in a plate microreactor. Chemical Engineering Journal, 2011, 176-177, 280-285.	6.6	32
177	Application of Fe–Zn–Mg–Al–O hydrotalcites supported Au as active nano-catalyst for fermentative hydrogen production. Chemical Engineering Journal, 2014, 253, 148-154.	6.6	32
178	Outstanding Methane Oxidation Performance of Palladiumâ€Embedded Ceria Catalysts Prepared by a One‧tep Dry Ballâ€Milling Method. Angewandte Chemie, 2018, 130, 10369-10373.	1.6	32
179	Catalytic Performance of Solution Combustion Synthesized Alumina- and Ceria-Supported Pt and Pd Nanoparticles for the Combustion of Propane and Dimethyl Ether (DME). Industrial & Engineering Chemistry Research, 2012, 51, 7510-7517.	1.8	31
180	Silver-based catalytic materials for the simultaneous removal of soot and NO. Catalysis Today, 2015, 258, 405-415.	2.2	31

#	Article	IF	CITATIONS
181	Fast and Simple Microwave Synthesis of TiO2/Au Nanoparticles for Gas-Phase Photocatalytic Hydrogen Generation. Frontiers in Chemistry, 2018, 6, 110.	1.8	31
182	Furfural production in a biphasic system using a carbonaceous solid acid catalyst. Applied Catalysis A: General, 2019, 585, 117180.	2.2	31
183	The Development of the Spanish Fireball Network Using a New All-Sky CCD System. Earth, Moon and Planets, 2006, 95, 553-567.	0.3	30
184	Observations of a very bright fireball and its likely link with comet C/1919 Q2 Metcalf. Monthly Notices of the Royal Astronomical Society, 2009, 394, 569-576.	1.6	30
185	Electrophoretic deposition of Co–Me/ZnO (Me=Mn,Fe) ethanol steam reforming catalysts on stainless steel plates. International Journal of Hydrogen Energy, 2009, 34, 2591-2599.	3.8	30
186	A comparative study of water-immiscible organic solvents in the production of furfural from xylose and birch hydrolysate. Journal of Industrial and Engineering Chemistry, 2019, 72, 354-363.	2.9	30
187	2002 Leonid storm fluxes and related orbital elements. Icarus, 2004, 171, 219-228.	1.1	29
188	The 2006 Orionid outburst imaged by all-sky CCD cameras from Spain: meteoroid spatial fluxes and orbital elements. Monthly Notices of the Royal Astronomical Society, 2007, 380, 126-132.	1.6	29
189	Tuning supramolecular aurophilic structures: the effect of counterion, positive charge and solvent. Dalton Transactions, 2016, 45, 7328-7339.	1.6	29
190	PHEV Battery Aging Study Using Voltage Recovery and Internal Resistance From Onboard Data. IEEE Transactions on Vehicular Technology, 2016, 65, 4209-4216.	3.9	29
191	SnS2/g-C3N4/graphite nanocomposites as durable lithium-ion battery anode with high pseudocapacitance contribution. Electrochimica Acta, 2020, 349, 136369.	2.6	29
192	Nickel Iron Diselenide for Highly Efficient and Selective Electrocatalytic Conversion of Methanol to Formate. Small, 2021, 17, e2006623.	5.2	29
193	Formation of carbides and hydrocarbons in chondritic interplanetary dust particles: A laboratory study. Meteoritics and Planetary Science, 1998, 33, 243-251.	0.7	28
194	Hydrogen photoproduction from bio-derived alcohols in an optical fiber honeycomb reactor loaded with Au/TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 281, 35-39.	2.0	28
195	Reactions of ethanol over CeO2 and Ru/CeO2 catalysts. Applied Catalysis B: Environmental, 2016, 197, 198-205.	10.8	28
196	<i>In Situ</i> Characterization of Mesoporous Co/CeO ₂ Catalysts for the High-Temperature Water-Gas Shift. Journal of Physical Chemistry C, 2018, 122, 8998-9008.	1.5	28
197	Dynamic modeling and controllability analysis of an ethanol reformer for fuel cell application. International Journal of Hydrogen Energy, 2010, 35, 9768-9775.	3.8	27
198	Simultaneous in situ generation of hydrogen peroxide and Fenton reaction over Pd–Fe catalysts. Physical Chemistry Chemical Physics, 2010, 12, 14673.	1.3	27

#	Article	IF	CITATIONS
199	Catalytic activity and characterization of Fe–Zn–Mg–Al hydrotalcites in biohydrogen production. International Journal of Hydrogen Energy, 2013, 38, 10284-10292.	3.8	27
200	CO preferential oxidation under H2-rich streams on copper oxide supported on Fe promoted CeO2. Applied Catalysis A: General, 2015, 506, 268-277.	2.2	27
201	Heterogeneous catalytic oxidation of phenol by in situ generated hydrogen peroxide applying novel catalytic membrane reactors. Chemical Engineering Journal, 2015, 262, 344-355.	6.6	27
202	Study of the effect of the chromophore and nuclearity on the aggregation and potential biological activity of gold(I) alkynyl complexes. Inorganica Chimica Acta, 2016, 446, 189-197.	1.2	27
203	Effect of temperature on the gas-phase photocatalytic H2 generation using microreactors under UVA and sunlight irradiation. Fuel, 2018, 222, 327-333.	3.4	27
204	Molecular Engineering to Tune the Ligand Environment of Atomically Dispersed Nickel for Efficient Alcohol Electrochemical Oxidation. Advanced Functional Materials, 2021, 31, 2106349.	7.8	27
205	UV to far-IR reflectance spectra of carbonaceous chondrites – I. Implications for remote characterization of dark primitive asteroids targeted by sample-return missions. Monthly Notices of the Royal Astronomical Society, 2014, 437, 227-240.	1.6	26
206	Synthesis and Thermoelectric Properties of Noble Metal Ternary Chalcogenide Systems of Ag–Au–Se in the Forms of Alloyed Nanoparticles and Colloidal Nanoheterostructures. Chemistry of Materials, 2016, 28, 7017-7028.	3.2	26
207	Experimental and exergy evaluation of ethanol catalytic steam reforming in a membrane reactor. Catalysis Today, 2016, 268, 68-78.	2.2	26
208	New Insights into the Dynamics That Control the Activity of Ceria–Zirconia Solid Solutions in Thermochemical Water Splitting Cycles. Journal of Physical Chemistry C, 2017, 121, 17746-17755.	1.5	26
209	Partial oxidation of methane to syngas using Co/Mg and Co/Mg-Al oxide supported catalysts. Catalysis Today, 2019, 333, 259-267.	2.2	26
210	Doping-mediated stabilization of copper vacancies to promote thermoelectric properties of Cu2â^'xS. Nano Energy, 2021, 85, 105991.	8.2	26
211	On the sodium overabundance in cometary meteoroids. Advances in Space Research, 2007, 39, 517-525.	1.2	25
212	The Puerto Lápice eucrite. Meteoritics and Planetary Science, 2009, 44, 159-174.	0.7	25
213	A million-channel CO-PrOx microreactor on a fingertip for fuel cell application. Chemical Engineering Journal, 2011, 167, 597-602.	6.6	25
214	Heterogenized Water Oxidation Catalysts Prepared by Immobilizing Kläiâ€Type Organometallic Precursors. Chemistry - A European Journal, 2016, 22, 13459-13463.	1.7	25
215	Cu supported on mesoporous ceria: water gas shift activity at low Cu loadings through metal–support interactions. Physical Chemistry Chemical Physics, 2017, 19, 17708-17717.	1.3	25
216	Model predictive control for ethanol steam reformers with membrane separation. International Journal of Hydrogen Energy, 2017, 42, 1949-1961.	3.8	25

#	Article	IF	CITATIONS
217	Preparation and photocatalytic activity of Au/TiO ₂ lyogels for hydrogen production. Sustainable Energy and Fuels, 2018, 2, 2284-2295.	2.5	25
218	Effect of TiO2 nanoshape on the photoproduction of hydrogen from water-ethanol mixtures over Au3Cu/TiO2 prepared with preformed Au-Cu alloy nanoparticles. Applied Catalysis B: Environmental, 2019, 248, 504-514.	10.8	25
219	Structural Evolution of Bimetallic PtPd/CeO ₂ Methane Oxidation Catalysts Prepared by Dry Milling. ACS Applied Materials & Interfaces, 2021, 13, 31614-31623.	4.0	25
220	Reactivity and Characterization of Pd-containing Ceria-Zirconia Catalysts for Methane Combustion. Studies in Surface Science and Catalysis, 1998, 119, 87-92.	1.5	24
221	Methanol synthesis from CO2 and H2 over gallium promoted copper-based supported catalysts. Effect of hydrocarbon impurities in the CO2/H2 source. Physical Chemistry Chemical Physics, 2001, 3, 4837-4842.	1.3	24
222	Determination of Meteoroid Orbits and Spatial Fluxes by Using High-Resolution All-Sky CCD Cameras. Earth, Moon and Planets, 2008, 102, 231-240.	0.3	24
223	Influence of Different Palladium Precursors on the Properties of Solution ombustion‧ynthesized Palladium/Ceria Catalysts for Methane Combustion. ChemCatChem, 2015, 7, 2222-2229.	1.8	24
224	Hydrogen photogeneration using ternary CuGaS2-TiO2-Pt nanocomposites. International Journal of Hydrogen Energy, 2020, 45, 1510-1520.	3.8	24
225	Selective Methanolâ€ŧoâ€Formate Electrocatalytic Conversion on Branched Nickel Carbide. Angewandte Chemie, 2020, 132, 21012-21016.	1.6	24
226	Activating the lattice oxygen oxidation mechanism in amorphous molybdenum cobalt oxide nanosheets for water oxidation. Journal of Materials Chemistry A, 2022, 10, 3659-3666.	5.2	24
227	Au/TiO ₂ 2Dâ€Photonic Crystals as UV–Visible Photocatalysts for H ₂ Production. Advanced Energy Materials, 2022, 12, .	10.2	24
228	Fast oxygen uptake/release over a new CeOx phase. Chemical Communications, 1998, , 1897-1898.	2.2	23
229	Pt–Ag/activated carbon catalysts for water denitration in a continuous reactor: Incidence of the metal loading, Pt/Ag atomic ratio and Pt metal precursor. Applied Catalysis B: Environmental, 2012, 127, 351-362.	10.8	23
230	Selective liquid phase benzyl alcohol oxidation over Cu-loaded LaFeO ₃ perovskite. RSC Advances, 2016, 6, 4469-4477.	1.7	23
231	Tin Diselenide Molecular Precursor for Solutionâ€Processable Thermoelectric Materials. Angewandte Chemie - International Edition, 2018, 57, 17063-17068.	7.2	23
232	Enhanced Thermoelectric Performance of n-Type Bi2Se3 Nanosheets through Sn Doping. Nanomaterials, 2021, 11, 1827.	1.9	23
233	Redox behavior of gold supported on ceria and ceria-zirconia based catalysts. Journal of Rare Earths, 2009, 27, 196-203.	2.5	22
234	Effect of redox treatments on Ce 0.50 Zr 0.50 O 2 based solid oxide fuel cell anodes. Journal of Power Sources, 2014, 270, 79-91.	4.0	22

#	Article	IF	CITATIONS
235	Exergetic study of catalytic steam reforming of bio-ethanol over Pd–Rh/CeO2 with hydrogen purification in a membrane reactor. International Journal of Hydrogen Energy, 2015, 40, 3574-3581.	3.8	22
236	Dynamic simulation of pure hydrogen production via ethanol steam reforming in a catalytic membrane reactor. Energy, 2016, 117, 316-324.	4.5	22
237	Finding a suitable catalyst for on-board ethanol reforming using exhaust heat from an internal combustion engine. International Journal of Hydrogen Energy, 2017, 42, 13681-13690.	3.8	22
238	Assessment of kinetic model for ceria oxidation for chemical-looping CO2 dissociation. Chemical Engineering Journal, 2018, 346, 171-181.	6.6	22
239	Ultradispersed Mo/TiO ₂ catalysts for CO ₂ hydrogenation to methanol. Green Chemistry, 2021, 23, 7259-7268.	4.6	22
240	Dynamic modeling of a three-stage low-temperature ethanol reformer for fuel cell application. Journal of Power Sources, 2009, 192, 208-215.	4.0	21
241	Dimethyl Ether Steam Reforming over Cu–Zn–Pd/CeO ₂ –ZrO ₂ Catalytic Monoliths. The Role of Cu Species on Catalyst Stability. Journal of Physical Chemistry C, 2011, 115, 11624-11632.	1.5	21
242	Room-Temperature Suzuki–Miyaura Reaction Catalyzed by Pd Supported on Rare Earth Oxides: Influence of the Point of Zero Charge on the Catalytic Activity. Catalysis Letters, 2013, 143, 547-554.	1.4	21
243	Simultaneous removal of soot and NO over K- and Ba-doped ruthenium supported catalysts. Catalysis Today, 2016, 267, 119-129.	2.2	21
244	Fast furfural formation from xylose using solid acid catalysts assisted by a microwave reactor. Fuel Processing Technology, 2018, 182, 56-67.	3.7	21
245	A low temperature solid state reaction to produce hollow MnxFe3-xO4 nanoparticles as anode for lithium-ion batteries. Nano Energy, 2019, 66, 104199.	8.2	21
246	The dynamics of PdO-Pd phase transformation in the presence of water over Si-doped Pd/CeO2 methane oxidation catalysts. Applied Catalysis A: General, 2019, 574, 79-86.	2.2	21
247	<i>In situ</i> environmental HRTEM discloses low temperature carbon soot oxidation by ceria–zirconia at the nanoscale. Chemical Communications, 2019, 55, 3876-3878.	2.2	21
248	Highly dispersed cobalt in CuCo/SiO2 cluster-derived catalyst. Journal of Molecular Catalysis A, 1999, 149, 225-232.	4.8	20
249	Hydrogen production by steam reforming of dimethyl ether over Cu–Zn/CeO2–ZrO2 catalytic monoliths. Chemical Engineering Journal, 2009, 154, 281-286.	6.6	20
250	In situ generation of hydrogen peroxide in catalytic membrane reactors. Catalysis Today, 2012, 193, 128-136.	2.2	20
251	Gold(I) omplex–Titania Hybrid Photocatalyst for Hydrogen Production. ChemCatChem, 2017, 9, 3289-3292	1.8	20
252	Co-Al spinel-based nanoparticles synthesized by flame spray pyrolysis for glycerol conversion. Advanced Powder Technology, 2017, 28, 3296-3306.	2.0	20

#	Article	IF	CITATIONS
253	Chromium phosphide CrP as highly active and stable electrocatalysts for oxygen electroreduction in alkaline media. Applied Catalysis B: Environmental, 2019, 256, 117846.	10.8	20
254	A Nafion Film Cover to Enhance the Analytical Performance of the CuO/Cu Electrochemical Sensor for Determination of Chemical Oxygen Demand. Sensors, 2019, 19, 669.	2.1	20
255	Optimization of the sintering thermal treatment and the ceramic ink used in direct ink writing of α-Al2O3: Characterization and catalytic application. Journal of the European Ceramic Society, 2022, 42, 2921-2930.	2.8	20
256	The Spanish fireball network. Astronomy and Geophysics, 2006, 47, 6.26-6.28.	0.1	19
257	Gas-phase hydrodechlorination of trichloroethylene over Pd/NiMgAl mixed oxide catalysts. Applied Catalysis B: Environmental, 2012, 117-118, 236-245.	10.8	19
258	Ethanol catalytic membrane reformer for direct PEM FC feeding. International Journal of Hydrogen Energy, 2013, 38, 5605-5615.	3.8	19
259	Pd0.01Ru0.01Ce0.98O2â~δ: A highly active and selective catalyst for the liquid phase hydrogenation of p-chloronitrobenzene under ambient conditions. Journal of Molecular Catalysis A, 2013, 376, 111-119.	4.8	19
260	Catalytic steam reforming of olive mill wastewater for hydrogen production. International Journal of Hydrogen Energy, 2015, 40, 7539-7545.	3.8	19
261	Hydrogen Photoproduction from Ethanol–Water Mixtures Over Au–Cu Alloy Nanoparticles Supported on TiO2. Topics in Catalysis, 2015, 58, 77-84.	1.3	19
262	Methanol steam reforming behavior of sol-gel synthesized nanodimensional CuxFe1-xAl2O4 hercynites. Applied Catalysis A: General, 2019, 570, 73-83.	2.2	19
263	Catalytic Performance of Bulk and Al2O3-Supported Molybdenum Oxide for the Production of Biodiesel from Oil with High Free Fatty Acids Content. Catalysts, 2020, 10, 158.	1.6	19
264	The Importance of Surface Adsorbates in Solutionâ€Processed Thermoelectric Materials: The Case of SnSe. Advanced Materials, 2021, 33, e2106858.	11.1	19
265	The Ksar Ghilane 002 shergottite—The 100th registered Martian meteorite fragment. Meteoritics and Planetary Science, 2013, 48, 493-513.	0.7	18
266	Highly water-dispersible magnetite-supported Pd nanoparticles and single atoms as excellent catalysts for Suzuki and hydrogenation reactions. RSC Advances, 2016, 6, 68675-68684.	1.7	18
267	Hydrogenolysis of Glycidol as an Alternative Route to Obtain 1,3â€Propanediol Selectively Using MO _{<i>x</i>} â€Modified Nickel opper Catalysts Supported on Acid Mesoporous Saponite. ChemCatChem, 2017, 9, 3670-3680.	1.8	18
268	Role of the synthesis route on the properties of hybrid LDH-graphene as basic catalysts. Applied Surface Science, 2017, 396, 821-831.	3.1	18
269	Electrically Polarized Hydroxyapatite: Influence of the Polarization Process on the Microstructure and Properties. Langmuir, 2019, 35, 14782-14790.	1.6	18
270	Silver and manganese co-doped titanium oxide aerogel for effective diclofenac degradation under UV-A light irradiation. Journal of Alloys and Compounds, 2019, 779, 314-325.	2.8	18

#	Article	IF	CITATIONS
271	Modelling of the ethanol steam reforming over Rh-Pd/CeO2 catalytic wall reactors. International Journal of Hydrogen Energy, 2020, 45, 26265-26273.	3.8	18
272	Increasing reaction time in Hummers' method towards well exfoliated graphene oxide of low oxidation degree. Ceramics International, 2021, 47, 22130-22137.	2.3	18
273	Selective synthesis of alcohols from syngas and hydroformylation of ethylene over supported cluster-derived cobalt catalysts. Catalysis Letters, 1996, 42, 87-91.	1.4	17
274	On the Origin of the 1999 Leonid Storm as Deduced from Photographic Observations. Earth, Moon and Planets, 2002, 91, 107-119.	0.3	17
275	Asymmetric epoxidation of chalcone catalyzed by reusable poly-l-leucine immobilized on hydrotalcite. Journal of Catalysis, 2011, 282, 65-73.	3.1	17
276	Hydrogen from Bioethanol. , 2013, , 135-169.		17
277	Synthesis of tungsten carbide on Al-SBA-15 mesoporous materials by carburization. Microporous and Mesoporous Materials, 2016, 219, 19-28.	2.2	17
278	Surface Chemistry and Nano-/Microstructure Engineering on Photocatalytic In2S3 Nanocrystals. Langmuir, 2018, 34, 6470-6479.	1.6	17
279	Carbosilane dendrons as stabilizing agents for the formation of gold nanoparticles. Journal of Organometallic Chemistry, 2011, 696, 2287-2293.	0.8	16
280	Ethanol Steam Reforming Over Hydrotalcite-Derived Co Catalysts Doped with Pt and Rh. Topics in Catalysis, 2013, 56, 1660-1671.	1.3	16
281	Copper ion substituted hercynite (Cu0.03Fe0.97Al2O4): A highly active catalyst for liquid phase oxidation of cyclohexane. Applied Catalysis A: General, 2014, 485, 40-50.	2.2	16
282	In situ photoelectron spectroscopy study of ethanol steam reforming over RhPd nanoparticles and RhPd/CeO2. Applied Catalysis A: General, 2016, 518, 60-66.	2.2	16
283	Plasma functionalized surface of commodity polymers for dopamine detection. Applied Surface Science, 2017, 399, 638-647.	3.1	16
284	Catalytic reforming of dimethyl ether in microchannels. Catalysis Today, 2019, 323, 209-215.	2.2	16
285	Effect of the formation of NiCu alloy and use of biomass-derived furfural on the catalytic hydrogenation of furfural to THFA. Molecular Catalysis, 2020, 490, 110956.	1.0	16
286	X-ray photoelectron and Raman spectroscopy of nanostructured ceria in soot oxidation under operando conditions. Carbon, 2021, 178, 164-180.	5.4	16
287	Enhanced photoproduction of hydrogen on Pd/TiO2 prepared by mechanochemistry. Applied Catalysis B: Environmental, 2022, 309, 121275.	10.8	16
288	Crystallite growth kinetics of highly pure nanocrystalline tin dioxide: The effect of palladium doping. Materials Chemistry and Physics, 2010, 121, 267-273.	2.0	15

#	Article	IF	CITATIONS
289	Pt-Cu bimetallic catalysts obtained from layered double hydroxides by an anion-exchange route. Applied Clay Science, 2012, 69, 1-10.	2.6	15
290	Organometallic surface functionalization of gold nanoparticles. Journal of Organometallic Chemistry, 2012, 715, 13-18.	0.8	15
291	CuZn/ZrO2 catalytic honeycombs for dimethyl ether steam reforming and autothermal reforming. Fuel, 2013, 104, 711-716.	3.4	15
292	Water splitting reaction on Ce _{0.15} Zr _{0.85} O ₂ driven by surface heterogeneity. Catalysis Science and Technology, 2016, 6, 399-403.	2.1	15
293	Plasmaâ€ŧreated polyethylene as electrochemical mediator for enzymatic glucose sensors: Toward bifunctional glucose and dopamine sensors. Plasma Processes and Polymers, 2018, 15, 1700133.	1.6	15
294	Pd/CeO ₂ Catalysts Prepared by Solvent-free Mechanochemical Route for Methane Abatement in Natural Gas Fueled Vehicles. Industrial & Engineering Chemistry Research, 2021, 60, 6435-6445.	1.8	15
295	Modelling and simulation of catalytic ammonia decomposition over Ni-Ru deposited on 3D-printed CeO2. Chemical Engineering Journal, 2022, 427, 131756.	6.6	15
296	Tin Selenide Molecular Precursor for the Solution Processing of Thermoelectric Materials and Devices. ACS Applied Materials & Interfaces, 2020, 12, 27104-27111.	4.0	15
297	Ligand Conversion in Nanocrystal Synthesis: The Oxidation of Alkylamines to Fatty Acids by Nitrate. Jacs Au, 2021, 1, 1898-1903.	3.6	15
298	Photocatalytic hydrogen production from alcohol aqueous solutions over TiO2-activated carbon composites decorated with Au and Pt. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 425, 113726.	2.0	15
299	Chemistry of dicobalt octacarbonyl on zinc oxide. Homonuclear ion-pairing surface species related to catalytic activity in ethylene hydroformylation. Journal of Molecular Catalysis A, 1995, 96, 49-55.	4.8	14
300	FTIR study of the interaction of CO and CO2 with silica-supported PtSn alloy. Applied Surface Science, 1998, 134, 217-224.	3.1	14
301	Ethanol photoreaction to hydrogen over Au/TiO _{2 catalysts. Investigating the synergistic effect of nanoparticles. International Journal of Nanotechnology, 2012, 9, 113.}	0.1	14
302	Improved thermal stability of oxide-supported naked gold nanoparticles by ligand-assisted pinning. Nanoscale, 2012, 4, 2278.	2.8	14
303	Co-Fe-Si Aerogel Catalytic Honeycombs for Low Temperature Ethanol Steam Reforming. Catalysts, 2012, 2, 386-399.	1.6	14
304	The Effect of Ceria on the Dynamics of CuO–Cu2O Redox Transformation: CuO–Cu2O Hysteresis on Ceria. Catalysis Letters, 2014, 144, 1023-1030.	1.4	14
305	Liquid phase selective oxidation of benzene over nanostructured CuxCe1â^xO2â^'δ (0.03â‰ ¤ â‰ 9 .15). Journal of Molecular Catalysis A, 2014, 390, 187-197.	4.8	14
306	Improved Stability of Pd/Al ₂ O ₃ Prepared from Palladium Nanoparticles Protected with Carbosilane Dendrons in the Dimethyl Ether Steam Reforming Reaction. ChemCatChem, 2015, 7, 2179-2187.	1.8	14

#	Article	IF	CITATIONS
307	Anaerobic co-digestion of acetate-rich with lignin-rich wastewater and the effect of hydrotalcite addition. Bioresource Technology, 2016, 218, 84-91.	4.8	14
308	OberflÄ ¤ henfacettierung und Rekonstruktion von Ceroxid―Nanopartikeln. Angewandte Chemie, 2017, 129, 382-387.	1.6	14
309	Furfural production from xylose and birch hydrolysate liquor in a biphasic system and techno-economic analysis. Biomass Conversion and Biorefinery, 2021, 11, 2095-2106.	2.9	14
310	Organic matter in meteorites. International Microbiology, 2004, 7, 239-48.	1.1	14
311	Activation of carbon dioxide by a silica-supported platinum–tin bimetallic complex. Journal of the Chemical Society Chemical Communications, 1994, , 2555-2556.	2.0	13
312	SPECTROSCOPY OF A GEMINID FIREBALL: ITS SIMILARITY TO COMETARY METEOROIDS AND THE NATURE OF ITS PARENT BODY. Earth, Moon and Planets, 2006, 95, 375-387.	0.3	13
313	Comparison between Ni–Rh/gadolinia doped ceria catalysts in reforming of propane for anode implementations in intermediate solid oxide fuel cells. Journal of Power Sources, 2010, 195, 649-661.	4.0	13
314	Performance of alkali modified Pd/Mg(Al)O catalysts for hydrodechlorination of 1,2,4-trichlorobenzene. Applied Catalysis B: Environmental, 2011, 105, 361-372.	10.8	13
315	Effect of impregnation protocol in the metallic sites of Pt–Ag/activated carbon catalysts for water denitration. Applied Surface Science, 2014, 298, 75-89.	3.1	13
316	Total degradation of p-hydroxybenzoic acid by Ru-catalysed wet air oxidation: a model for wastewater treatment. Environmental Chemistry Letters, 2015, 13, 481-486.	8.3	13
317	Waterâ€Gasâ€Shift over Metalâ€Free Nanocrystalline Ceria: An Experimental and Theoretical Study. ChemCatChem, 2017, 9, 1373-1377.	1.8	13
318	Sources of deactivation during glycerol conversion on Ni/ \hat{I}^3 -Al2O3. Molecular Catalysis, 2017, 435, 49-57.	1.0	13
319	Chemoselective hydrogenation of cinnamaldehyde at atmospheric pressure over combustion synthesized Pd catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122, 135-153.	0.8	13
320	Growth of Au–Pd ₂ Sn Nanorods via Galvanic Replacement and Their Catalytic Performance on Hydrogenation and Sonogashira Coupling Reactions. Langmuir, 2018, 34, 10634-10643.	1.6	13
321	Ligand and support effects on the reactivity and stability of Au38(SR)24 catalysts in oxidation reactions. Catalysis Communications, 2019, 130, 105768.	1.6	13
322	Hollow PdAg-CeO2 heterodimer nanocrystals as highly structured heterogeneous catalysts. Scientific Reports, 2019, 9, 18776.	1.6	13
323	Structural and electronic properties of the one-dimensional organic metal bis(thiodimethylene)-tetrathiafulvalene tetracyanoquinodimethane. Physical Review B, 1995, 52, 8747-8758.	1.1	12
324	Chiral Biases in Solids by Effect of Shear Gradients: A Speculation on the Deterministic Origin of Biological Homochirality. Origins of Life and Evolution of Biospheres, 2010, 40, 27-40.	0.8	12

#	Article	IF	CITATIONS
325	Catalytic activity and characterization of Pt/calcined CuZnAl hydrotalcites in nitrate reduction reaction in water. Catalysis Today, 2011, 175, 370-379.	2.2	12
326	Synthesis and characterization of nanoparticles of CZTSe by microwave-assited chemical synthesis. Materials Research Express, 2016, 3, 125017.	0.8	12
327	Macroporous Silicon Filters, a Versatile Platform for NDIR Spectroscopic Gas Sensing in the MIR. Journal of the Electrochemical Society, 2019, 166, B1010-B1015.	1.3	12
328	Macroporous silicon coated with M/TiO2 (M=Au,Pt) as a highly efficient photoreactor for hydrogen production. Chemical Engineering Journal, 2020, 393, 124701.	6.6	12
329	Organic matter in comets and cometary dust. International Microbiology, 2005, 8, 5-12.	1.1	12
330	The Villalbeto de la Peña meteorite fall: III. Bulk chemistry, porosity, magnetic properties, ⁵⁷ Fe Mössbauer spectroscopy, and Raman spectroscopy. Meteoritics and Planetary Science, 2007, 42, A177.	0.7	11
331	Synthetic strategies for the surface functionalisation of gold nanoparticles with metals and metal clusters. Dalton Transactions, 2011, 40, 7934.	1.6	11
332	Facile Synthesis of Palladium Nanoparticles Protected with Alkanethiolates Functionalized with Organometallic Fragments. Organometallics, 2012, 31, 722-728.	1.1	11
333	Standalone ethanol micro-reformer integrated on silicon technology for onboard production of hydrogen-rich gas. Lab on A Chip, 2016, 16, 2900-2910.	3.1	11
334	Structural and electrocatalytic properties of molten core Sn@SnOx nanoparticles on ceria. Applied Catalysis B: Environmental, 2016, 197, 254-261.	10.8	11
335	Simulation of two-step redox recycling of non-stoichiometric ceria with thermochemical dissociation of CO2/H2O in moving bed reactors – Part II: Techno-economic analysis and integration with 100†MW oxyfuel power plant with carbon capture. Chemical Engineering Science, 2019, 205, 358-373.	1.9	11
336	Carbonaceous catalysts from orange pulp for limonene oxidation. Carbon Letters, 2020, 30, 189-198.	3.3	11
337	Recycled Low-Density Polyethylene for Noninvasive Glucose Monitoring: A Proposal for Plastic Recycling that Adds Technological Value. ACS Sustainable Chemistry and Engineering, 2020, 8, 12554-12560.	3.2	11
338	Assessment of integration of methane-reduced ceria chemical looping CO2/H2O splitting cycle to an oxy-fired power plant. International Journal of Hydrogen Energy, 2020, 45, 6184-6206.	3.8	11
339	Low-Temperature Methane Partial Oxidation over Pd Supported on CeO2: Effect of the Preparation Method and Precursors. Reactions, 2021, 2, 30-42.	0.9	11
340	Photodehydrogenation of Ethanol over Cu2O/TiO2 Heterostructures. Nanomaterials, 2021, 11, 1399.	1.9	11
341	Immobilization of glucose oxidase on plasma-treated polyethylene for non-invasive glucose detection. Journal of Electroanalytical Chemistry, 2021, 895, 115509.	1.9	11
342	Photocatalytic hydrogen production from water-methanol and -glycerol mixtures using Pd/TiO2(-WO3) catalysts and validation in a solar pilot plant. International Journal of Hydrogen Energy, 2021, 46, 36152-36166.	3.8	11

#	Article	IF	CITATIONS
343	Methanol steam reforming over PdZn/ZnAl2O4/Al2O3 in a catalytic membrane reactor: An experimental and modelling study. International Journal of Hydrogen Energy, 2022, 47, 11574-11588.	3.8	11
344	Kinetic study of formation of [Co(H2PO4)(H2O)5]2+ at various acidities and ionic strengths. Journal of the Chemical Society Dalton Transactions, 1992, , 229.	1.1	10
345	Synthesis and characterization of poly-l-leucine initialized and immobilized by rehydrated hydrotalcite: understanding stability and the nature of interaction. Physical Chemistry Chemical Physics, 2013, 15, 15645.	1.3	10
346	Design of linear controllers applied to an ethanol steam reformer for PEM fuel cell applications. International Journal of Hydrogen Energy, 2013, 38, 7640-7646.	3.8	10
347	Vegetable Oil Transesterification in Supercritical Conditions Using Co-solvent Carbon Dioxide over Solid Catalysts: A Screening Study. Energy & Fuels, 2014, 28, 6006-6011.	2.5	10
348	A plausible link between the asteroid 21 Lutetia and <scp>CH</scp> carbonaceous chondrites. Meteoritics and Planetary Science, 2016, 51, 1795-1812.	0.7	10
349	CO-PrOx over nano-Au/TiO2: Monolithic catalyst performance and empirical kinetic model fitting. International Journal of Hydrogen Energy, 2016, 41, 22043-22054.	3.8	10
350	Effect of Fe–Zn–Mg–Al hydrotalcites on the methane potential of synthetic sulfate-containing wastewater. Journal of Water Process Engineering, 2016, 10, 120-127.	2.6	10
351	Structural and chemical state of doped and impregnated mesoporous Ni/CeO2 catalysts for the water-gas shift. Applied Catalysis A: General, 2018, 567, 1-11.	2.2	10
352	Catalytic Transformation of Biomass-Derived 5-Hydroxymethylfurfural over Supported Bimetallic Iridium-Based Catalysts. Journal of Physical Chemistry C, 2021, 125, 9657-9678.	1.5	10
353	Bimetallic Pt-M (M=Ga, In, Ti) silica-supported catalysts for isobutane de dehydrogenation. Studies in Surface Science and Catalysis, 2000, 130, 2513-2518.	1.5	9
354	Puerto Lápice eucrite fall: Strewn field, physical description, probable fireball trajectory, and orbit. Meteoritics and Planetary Science, 2009, 44, 175-186.	0.7	9
355	Controllability study of an ethanol steam reforming process for hydrogen production. Journal of Power Sources, 2011, 196, 4411-4417.	4.0	9
356	Direct growth of hydrotalcite nanolayers on carbon fibers by electrospinning. Applied Clay Science, 2014, 101, 461-467.	2.6	9
357	Au/TiO2 Lyogels for Hydrogen Production. MRS Advances, 2017, 2, 3499-3504.	0.5	9
358	Up-conversion luminescence coupled to plasmonic gold nanorods for light harvesting and hydrogen production. Chemical Communications, 2017, 53, 13051-13054.	2.2	9
359	Tin Diselenide Molecular Precursor for Solutionâ€Processable Thermoelectric Materials. Angewandte Chemie, 2018, 130, 17309-17314	1.6	9
360	A SnS ₂ Molecular Precursor for Conformal Nanostructured Coatings. Chemistry of Materials, 2020, 32, 2097-2106.	3.2	9

#	Article	IF	CITATIONS
361	PbS–Pb–Cu <i>_x</i> S Composites for Thermoelectric Application. ACS Applied Materials & Interfaces, 2021, 13, 51373-51382.	4.0	9
362	Use of Nb2O5 as nickel passivating agent: characterisation of the Ni/Nb2O5/SiO2 system. Catalysis Today, 2003, 78, 459-465.	2.2	8
363	4-Mercaptophenyldiphenylphosphine as linker to immobilize Pd onto the surface of magnetite nanoparticles. Excellent catalytic efficiency of the system after partial linker removal. RSC Advances, 2015, 5, 91340-91348.	1.7	8
364	Bio-nanohybrid catalysts based on l-leucine immobilized in hydrotalcite and their activity in aldol reaction. Applied Catalysis A: General, 2016, 519, 116-129.	2.2	8
365	High temperature mechanical properties and microstructure of hard TaSiN coatings. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 797, 139976.	2.6	8
366	Monoliths washcoated with AuCu catalysts for CO removal in an ethanol fuel processor: Effect of CeO2–SiO2 dual support on the catalytic performance and reactor cost. International Journal of Hydrogen Energy, 2021, 46, 2166-2181.	3.8	8
367	Hydrogen photoproduction on TiO2-reduced graphene oxide hybrid materials from water-ethanol mixture. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 418, 113406.	2.0	8
368	Asteroid Mining: Mineral Resources in Undifferentiated Bodies from the Chemical Composition of Carbonaceous Chondrites. Thirty Years of Astronomical Discovery With UKIRT, 2017, , 73-101.	0.3	8
369	The Cali meteorite fall: A new H/L ordinary chondrite. Meteoritics and Planetary Science, 2009, 44, 211-220.	0.7	7
370	Exploiting Metallophilicity for the Assembly of Inorganic Nanocrystals and Conjugated Organic Molecules. ChemPhysChem, 2016, 17, 2190-2196.	1.0	7
371	CuGaS2 and CuGaS2–ZnS Porous Layers from Solution-Processed Nanocrystals. Nanomaterials, 2018, 8, 220.	1.9	7
372	Low Temperature Infrared Study of Carbon Monoxide Adsorption on Rh/CeO2. Catalysts, 2019, 9, 598.	1.6	7
373	New observations on highâ€pressure phases in a shock melt vein in the Villalbeto de la Peña meteorite: Insights into the shock behavior of diopside. Meteoritics and Planetary Science, 2019, 54, 2845-2863.	0.7	7
374	A straightforward method to prepare supported Au clusters by mechanochemistry and its application in photocatalysis. Applied Materials Today, 2020, 21, 100873.	2.3	7
375	Comparing the reflectivity of ungrouped carbonaceous chondrites with those of short-period comets like 2P/Encke. Astronomy and Astrophysics, 2020, 641, A58.	2.1	7
376	Empirical demonstration of CO ₂ detection using macroporous silicon photonic crystals as selective thermal emitters. Optics Letters, 2019, 44, 4535.	1.7	7
377	Relationship between surface properties of PtSn-SiO2 catalysts and their catalytic performance for the CO2 and propylene reaction to yield hydroxybutanoic acid. Applied Organometallic Chemistry, 2000, 14, 783-788.	1.7	6
378	Leonid fluxes: 1994–1998 activity patterns. Meteoritics and Planetary Science, 2001, 36, 1597-1604.	0.7	6

#	Article	IF	CITATIONS
379	UO 2 surface oxidation by mixtures of water vapor and hydrogen as a function of temperature. Journal of Nuclear Materials, 2015, 467, 240-243.	1.3	6
380	Experimental study of 2-methoxyethanol steam reforming in a membrane reactor for pure hydrogen production. Fuel, 2017, 190, 312-317.	3.4	6
381	Transforming a Compact Disk into a Simple and Cheap Photocatalytic Nanoreactor. ACS Omega, 2018, 3, 6971-6975.	1.6	6
382	Al2O3-supported Pt/Rh catalysts for NOx removal under lean conditions. Applied Catalysis A: General, 2019, 581, 43-57.	2.2	6
383	Monitoring the insertion of Pt into Cu _{2â[~]x} Se nanocrystals: a combined structural and chemical approach for the analysis of new ternary phases. Nanoscale, 2020, 12, 16627-16638.	2.8	6
384	CO Oxidation on Ceria Studied by Electrochemical Impedance Spectroscopy. ChemCatChem, 2020, 12, 5926-5931.	1.8	6
385	(BTDM-TTF)-TCNQ complex, a new organic metal. Synthetic Metals, 1993, 56, 2050-2056.	2.1	5
386	Orbital Elements of 2004 Perseid Meteoroids Perturbed by Jupiter. Earth, Moon and Planets, 2006, 97, 269-278.	0.3	5
387	Microwave-Assisted Furfural Production Using Hectorites and Fluorohectorites as Catalysts. Catalysts, 2019, 9, 706.	1.6	5
388	Chelyabinsk Meteorite as a Proxy for Studying the Properties of Potentially Hazardous Asteroids and Impact Deflection Strategies. Thirty Years of Astronomical Discovery With UKIRT, 2017, , 219-241.	0.3	5
389	7-Hydroxy-2-(2,3,4-trimethoxyphenyl)-4H-1-benzopyran-4-one: (7-hydroxy-2?,3?,4?-trimethoxyflavone). Journal of Crystallographic and Spectroscopic Research, 1993, 23, 481-484.	0.3	4
390	Synthesis of alcohols from syngas over Ni-based catalyst: comparison with the hydroformylation reaction. Studies in Surface Science and Catalysis, 1997, , 9-14.	1.5	4
391	Support effect on the n-hexane dehydrogenation reaction over platinum-tin catalysts. Studies in Surface Science and Catalysis, 1998, , 647-652.	1.5	4
392	Novel nanohybrid materials based on l-leucine on hydrotalcite clays: Asymmetric epoxidation reaction of chalcona. Catalysis Today, 2011, 172, 48-52.	2.2	4
393	Heterogeneous Fenton-like oxidation of p-hydroxybenzoic acid using Fe/CeO2-TiO2 catalyst. Water Science and Technology, 2019, 79, 1276-1286.	1.2	4
394	Thermodynamic assessment of non-catalytic Ceria for syngas production by methane reduction and CO2 + H2O oxidation. Materials for Renewable and Sustainable Energy, 2019, 8, 1.	1.5	4
395	Simulation of two-step redox recycling of non-stoichiometric ceria with thermochemical dissociation of CO2/H2O in moving bed reactors – Part I: Model development with redox kinetics and sensitivity analysis. Chemical Engineering Science, 2020, 226, 114873.	1.9	4
396	A million-microchannel multifuel steam reformer for hydrogen production. Catalysis Today, 2021, 362, 55-61.	2.2	4

#	Article	IF	CITATIONS
397	Chelating agent effects in the synthesis of supported Ni nanoparticles as catalysts for hydrogen production. Applied Catalysis A: General, 2021, 622, 118219.	2.2	4
398	Photoproduction of hydrogen in microreactors: Catalytic coating or slurry configuration?. Catalysis Today, 2022, 383, 156-163.	2.2	4
399	Water-mediated photo-induced reduction of platinum films. Journal of Synchrotron Radiation, 2019, 26, 1288-1293.	1.0	4
400	March 1, 2005 Daylight Fireball Over Galicia (NW of Spain) and Minho (N. Portugal). Earth, Moon and Planets, 2008, 102, 537-542.	0.3	3
401	Macroporous silicon microreactor for the preferential oxidation of CO. , 2013, , .		3
402	The Ardón L6 ordinary chondrite: A longâ€hidden Spanish meteorite fall. Meteoritics and Planetary Science, 2014, 49, 1475-1484.	0.7	3
403	Ambient Pressure Photoemission Spectroscopy Reveals the Mechanism of Carbon Soot Oxidation in Ceria-Based Catalysts. ChemCatChem, 2016, 8, 2735-2735.	1.8	3
404	Nonlinear Model Predictive Control for hydrogen production in an Ethanol Steam Reformer with membrane separation. , 2016, , .		3
405	Oxidation by H2O(g) in the presence of H2(g) of UO2 doped with Pd nanoparticles. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318, 1201-1207.	0.7	3
406	Hydrogen production in microreactors. , 2020, , 141-182.		3
407	CO Total and Preferential Oxidation over Stable Au/TiO2 Catalysts Derived from Preformed Au Nanoparticles. Catalysts, 2020, 10, 1028.	1.6	3
408	The meteorite of Barcelona (1704): History, discovery, and classification. Meteoritics and Planetary Science, 2020, 55, 705-725.	0.7	3
409	Determination of Meteoroid Orbits and Spatial Fluxes by Using High-Resolution All-Sky CCD Cameras. , 2008, , 231-240.		3
410	Chemical Abundances of Cometary Meteoroids from Meteor Spectroscopy. Cellular Origin and Life in Extreme Habitats, 2004, , 201-204.	0.3	3
411	Catalytic reaction of CO2 with C2H4 on supported Pt-Sn bimetallic catalysts. Studies in Surface Science and Catalysis, 1998, , 153-158.	1.5	2
412	Dichloro(D-methionine-N,S)platinum(II) at 130â€K. Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 804-806.	0.4	2
413	Are organic molecules produced by nebular Fischer-Tropsch processes preserved in comets?. Advances in Space Research, 2002, 30, 1469-1472.	1.2	2
414	Single step combustion synthesized Cu/Ce _{0.8} Zr _{0.2} O ₂ for methanol steam reforming: structural insights from <i>in situ</i> XPS and HRTEM studies. Journal of Lithic Studies, 2015, 1, 174-182.	0.1	2

#	Article	IF	CITATIONS
415	Study of Cu-Zn and Au/TiO2 Catalysts on Anodized Aluminum Monoliths for Hydrogen Generation and Purification. International Journal of Chemical Reactor Engineering, 2016, 14, 831-842.	0.6	2
416	NH ₂ - or PPh ₂ -functionalized linkers for the immobilization of palladium on magnetite nanoparticles?. RSC Advances, 2017, 7, 27872-27880.	1.7	2
417	Outstanding dispersion of CeO2 on reduced graphene oxide. Implications for highly dispersed Pd catalysts. Diamond and Related Materials, 2020, 109, 108061.	1.8	2
418	Investigation of physicochemical and electrical properties of \$\$hbox {TiO}_{{2}}\$\$ nanotubes/graphene oxide nanocomposite. Bulletin of Materials Science, 2020, 43, 1.	0.8	2
419	Standalone micro-reformer for on-demand hydrogen production from dimethyl ether. Journal of Power Sources, 2021, 506, 230241.	4.0	2
420	The Development of the Spanish Fireball Network Using a New All-Sky CCD System. , 2005, , 553-567.		2
421	The Spanish Fireball Network: Popularizing Interplanetary Matter. EAS Publications Series, 2005, 16, 129-133.	0.3	2
422	4,6,10,12-Tetraphenyl-7,9-dioxa-1,3-dithiacyclododecane. Acta Crystallographica Section C: Crystal Structure Communications, 1997, 53, 816-818.	0.4	1
423	[PtCl3(μ-SCH2C5H9NMe)2PtCl]: First chelate compound of 3-mercaptomethyl-1-methylpiperidine. Journal of Chemical Crystallography, 1998, 28, 73-75.	0.5	1
424	On The Reaction between Carbon Dioxide, Ethylene, and Water over Supported Platinum–Tin Catalysts. A Combined Drift–Mass Spectrometry Study. Journal of Catalysis, 2001, 197, 220-223.	3.1	1
425	The Berduc L6 chondrite fall: Meteorite characterization, trajectory, and orbital elements. Meteoritics and Planetary Science, 2010, 45, 383-393.	0.7	1
426	New alternative energy pathway for chemical pulp mills: From traditional fibers to methane production. Bioresource Technology, 2017, 235, 265-273.	4.8	1
427	The reflectance spectra of CV–CK carbonaceous chondrites from the near-infrared to the visible. Monthly Notices of the Royal Astronomical Society, 2021, 507, 651-662.	1.6	1
428	Spectroscopy of a Geminid Fireball: Its Similarity to Cometary Meteoroids and the Nature of its Parent Body. , 2005, , 375-387.		1
429	Crystal structure of the semiconducting radical salt BTDMTTF.AsF6. Synthetic Metals, 1993, 56, 1944-1949.	2.1	0
430	High-Energy Mechanical Synthesis of Nanophase Fluorite-Structured Mixed Oxide Catalysts with a High Redox Activity. Materials Research Society Symposia Proceedings, 1996, 454, 247.	0.1	0
431	Hydrocarbon synthesis in cometary grains. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science, 1999, 24, 591-595.	0.2	0
432	The Cali Meteorite: Luminescence of a recently fallen Hâ^•L ordinary chondrite. , 2009, , .		0

#	Article	IF	Citations
433	Hydrogen from bioethanol: Catalytic honeycombs loaded with Co-Fe/ZnOfor small-scale energy applications. Materials Research Society Symposia Proceedings, 2011, 1326, 1.	0.1	0
434	Stability of ruthenium catalysts supported by aerogel mixed oxides during the wet air oxidation of p-hydroxybenzoic acid in a continuous reactor. Reaction Kinetics, Mechanisms and Catalysis, 2012, 107, 311-319.	0.8	0
435	Fabrication and characterization of a fuel flexible micro-reformer fully integrated in silicon for micro-solid oxide fuel cell applications. Proceedings of SPIE, 2015, , .	0.8	0
436	A Pd/Al2O3-based micro-reformer unit fully integrated in silicon technology for H-rich gas production. Journal of Physics: Conference Series, 2019, 1407, 012048.	0.3	0
437	Absorption mechanisms in macroporous silicon photonic crystals. Sensors and Actuators A: Physical, 2020, 303, 111698.	2.0	0
438	Facile morphology control of gold(0) structures from aurophilic assemblies. Dalton Transactions, 2020, 49, 4200-4205.	1.6	0
439	March 1, 2005 Daylight Fireball Over Galicia (NW of Spain) and Minho (N. Portugal). , 2007, , 537-542.		0