Jie Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/595934/publications.pdf Version: 2024-02-01

LE SONC

#	Article	IF	CITATIONS
1	Morphological and Molecular Evidence for Two New Species within Russula Subgenus Brevipes from China. Diversity, 2022, 14, 112.	1.7	6
2	Use of electrochemistry in mini-/micro-LEDs and VCSELs. , 2022, , .		0
3	Morphological Characters and Molecular Phylogeny Reveal Three New Species of Subgenus Russula from China. Life, 2022, 12, 480.	2.4	5
4	DNA hydrogel-based gene editing and drug delivery systems. Advanced Drug Delivery Reviews, 2021, 168, 79-98.	13.7	155
5	Information processing based on DNA toehold-mediated strand displacement (TMSD) reaction. Nanoscale, 2021, 13, 2100-2112.	5.6	23
6	Monolithic RGB Micro-Light-Emitting Diodes Fabricated with Quantum Dots Embedded inside Nanoporous GaN. ACS Applied Electronic Materials, 2021, 3, 4877-4881.	4.3	7
7	Polarized monolithic white semipolar (20–21) InGaN light-emitting diodes grown on high quality (20–21) GaN/sapphire templates and its application to visible light communication. Nano Energy, 2020, 67, 104236.	16.0	53
8	High Quality, Massâ€Producible Semipolar GaN and InGaN Lightâ€Emitting Diodes Grown on Sapphire. Physica Status Solidi (B): Basic Research, 2020, 257, 1900565.	1.5	6
9	High polarization and fast modulation speed of dual wavelengths electroluminescence from semipolar (20-21) micro light-emitting diodes with indium tin oxide surface grating. Applied Physics Letters, 2020, 117, .	3.3	16
10	Modular Reconfigurable DNA Origami: From Twoâ€Dimensional to Threeâ€Dimensional Structures. Angewandte Chemie, 2020, 132, 23477-23482.	2.0	4
11	A facile and efficient approach for hypertrophic scar therapy via DNA-based transdermal drug delivery. Nanoscale, 2020, 12, 18682-18691.	5.6	12
12	Room-Temperature Continuous-Wave Electrically Driven Semipolar (202Ì1) Blue Laser Diodes Heteroepitaxially Grown on a Sapphire Substrate. ACS Photonics, 2020, 7, 1662-1666.	6.6	11
13	High-Bandwidth Green Semipolar (20–21) InGaN/GaN Micro Light-Emitting Diodes for Visible Light Communication. ACS Photonics, 2020, 7, 2228-2235.	6.6	99
14	Improving performance of semipolar (202Â ⁻ 1) light emitting diodes through reduction of threading dislocations by AlGaN/GaN superlattice interlayer. Journal of Crystal Growth, 2020, 536, 125575.	1.5	2
15	Information Coding in a Reconfigurable DNA Origami Domino Array. Angewandte Chemie, 2020, 132, 13091-13097.	2.0	11
16	560â€nm InGaN micro-LEDs on low-defect-density and scalable (20-21) semipolar GaN on patterned sapphire substrates. Optics Express, 2020, 28, 18150.	3.4	13
17	Full-color micro-LED display with high color stability using semipolar (20-21) InGaN LEDs and quantum-dot photoresist. Photonics Research, 2020, 8, 630.	7.0	116
18	Toward heteroepitaxially grown semipolar GaN laser diodes under electrically injected continuous-wave mode: From materials to lasers. Applied Physics Reviews, 2020, 7, .	11.3	7

Jie Song

#	Article	IF	CITATIONS
19	Green Light-Emitting Diodes with 667 MHz Modulation Bandwidth for Visible Light Communication. , 2020, , .		0
20	Elimination of Stacking Faults in Semipolar GaN and Light-Emitting Diodes Grown on Sapphire. ACS Applied Materials & Interfaces, 2019, 11, 33140-33146.	8.0	38
21	Semipolar (202ì1ì) GaN and InGaN Light-Emitting Diodes Grown on Sapphire. ACS Applied Materials & Interfaces, 2017, 9, 14088-14092.	8.0	23
22	Nitrogen-Polar (000 1 ${\rm \hat{A}}^{\scriptscriptstyle -}$) GaN Grown on c-Plane Sapphire with a High-Temperature AlN Buffer. Materials, 2017, 10, 252.	2.9	14
23	Significantly Improved Luminescence Properties of Nitrogen-Polar (0001Ì) InGaN Multiple Quantum Wells Grown by Pulsed Metalorganic Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2015, 7, 273-278.	8.0	15
24	Analysis of channel confined selective area growth in evolutionary growth of GaN on SiO2. Journal of Crystal Growth, 2015, 426, 95-102.	1.5	4
25	Single Crystalline GaN Tiles Grown on Si (111) Substrates by Confined Lateral Guided Growth to Eliminate Wafer Bowing. Advanced Materials Interfaces, 2015, 2, 1500014.	3.7	6
26	Using the Evolutionary Selection Principle in Selective Area Growth to Achieve Single-Crystalline GaN on SiO ₂ . International Journal of High Speed Electronics and Systems, 2014, 23, 1450003.	0.7	0
27	Nanomembranes: Single Crystal Gallium Nitride Nanomembrane Photoconductor and Field Effect Transistor (Adv. Funct. Mater. 41/2014). Advanced Functional Materials, 2014, 24, 6564-6564.	14.9	0
28	Semipolar (20 2Â ⁻ 1) GaN and InGaN quantum wells on sapphire substrates. Applied Physics Letters, 2014, 104, 262105.	3.3	31
29	Growth, structural and optical properties of ternary InGaN nanorods prepared by selective-area metalorganic chemical vapor deposition. Nanotechnology, 2014, 25, 225602.	2.6	10
30	Epitaxial Lateral Overgrowth of Nitrogen-Polar (0001Ì) GaN by Metalorganic Chemical Vapor Deposition. Crystal Growth and Design, 2014, 14, 2510-2515.	3.0	36
31	Single Crystal Gallium Nitride Nanomembrane Photoconductor and Field Effect Transistor. Advanced Functional Materials, 2014, 24, 6503-6508.	14.9	28
32	Multi-color broadband visible light source via GaN hexagonal annular structure. Scientific Reports, 2014, 4, 5514.	3.3	46
33	Semiconductors: Evolutionary Selection Growth: Towards Templateâ€Insensitive Preparation of Singleâ€Crystal Layers (Adv. Mater. 9/2013). Advanced Materials, 2013, 25, 1226-1226.	21.0	0
34	Evolutionary Selection Growth: Towards Templateâ€Insensitive Preparation of Singleâ€Crystal Layers. Advanced Materials, 2013, 25, 1285-1289.	21.0	30
35	Spatiotemporal Control of Molecular Cascade Reactions by a Reconfigurable DNA Origami Domino Array. Angewandte Chemie, 0, , .	2.0	0