
Anouk M Rijs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5959334/publications.pdf Version: 2024-02-01

ANOUR M Rus

#	Article	IF	CITATIONS
1	The gas-phase infrared spectra of the 2-methylallyl radical and its high-temperature reaction products. Physical Chemistry Chemical Physics, 2022, 24, 7682-7690.	2.8	4
2	Structural Properties of Phenylalanine-Based Dimers Revealed Using IR Action Spectroscopy. Molecules, 2022, 27, 2367.	3.8	2
3	Gas-Phase Infrared Spectra of the C ₇ H ₅ Radical and Its Bimolecular Reaction Products. Journal of Physical Chemistry A, 2022, 126, 2532-2540.	2.5	4
4	New potential candidates for astronomical searches discovered in the electrical discharge of the PAH naphthalene and acetonitrile. Journal of Molecular Spectroscopy, 2022, 386, 111629.	1.2	1
5	Using a Caenorhabditis elegans Parkinson's Disease Model to Assess Disease Progression and Therapy Efficiency. Pharmaceuticals, 2022, 15, 512.	3.8	8
6	Fragmentation Dynamics of Fluorene Explored Using Ultrafast XUV-Vis Pump-Probe Spectroscopy. Frontiers in Physics, 2022, 10, .	2.1	2
7	Polycyclic aromatic hydrocarbon growth in a benzene discharge explored by IR-UV action spectroscopy. Physical Chemistry Chemical Physics, 2022, 24, 14816-14824.	2.8	6
8	High-resolution infrared spectroscopy of naphthalene and acenaphthene dimers. Molecular Physics, 2021, 119, e1811908.	1.7	7
9	How does the composition of a PAH influence its microsolvation? A rotational spectroscopy study of the phenanthrene–water and phenanthridine–water clusters. Physical Chemistry Chemical Physics, 2021, 23, 9721-9732.	2.8	18
10	Metabolomics of sebum reveals lipid dysregulation in Parkinson's disease. Nature Communications, 2021, 12, 1592.	12.8	91
11	Probing the formation of isolated cyclo-FF peptide clusters by far-infrared action spectroscopy. Physical Chemistry Chemical Physics, 2021, 23, 20945-20956.	2.8	3
12	Validating Differential Volatilome Profiles in Parkinson's Disease. ACS Central Science, 2021, 7, 300-306.	11.3	20
13	Time-resolved relaxation and fragmentation of polycyclic aromatic hydrocarbons investigated in the ultrafast XUV-IR regime. Nature Communications, 2021, 12, 6107.	12.8	18
14	Infrared Spectroscopy of Jet-cooled "GrandPAHs―in the 3–100 μm Region. Astrophysical Journal, 2021, 923, 238.	4.5	4
15	Far-IR Absorption of Neutral Polycyclic Aromatic Hydrocarbons (PAHs): Light on the Mechanism of IR–UV Ion Dip Spectroscopy. Journal of Physical Chemistry Letters, 2020, 11, 8997-9002.	4.6	4
16	Ultrafast ionization and fragmentation dynamics of polycyclic atomatic hydro-carbons by XUV radiation. Journal of Physics: Conference Series, 2020, 1412, 112008.	0.4	0
17	Sodium cationization can disrupt the intramolecular hydrogen bond that mediates the sunscreen activity of oxybenzone. Physical Chemistry Chemical Physics, 2020, 22, 19522-19531.	2.8	9
18	Characterization of glycosyl dioxolenium ions and their role in glycosylation reactions. Nature Communications, 2020, 11, 2664.	12.8	83

#	Article	IF	CITATIONS
19	Do Xylylenes Isomerize in Pyrolysis?. ChemPhysChem, 2020, 21, 1515-1518.	2.1	5
20	Unravelling the Keto–Enol Tautomer Dependent Photochemistry and Degradation Pathways of the Protonated UVA Filter Avobenzone. Journal of Physical Chemistry A, 2020, 124, 2919-2930.	2.5	34
21	Gas-Phase Infrared Spectroscopy of Neutral Peptides: Insights from the Far-IR and THz Domain. Chemical Reviews, 2020, 120, 3233-3260.	47.7	48
22	Polycyclic aromatic hydrocarbon formation chemistry in a plasma jet revealed by IR-UV action spectroscopy. Nature Communications, 2020, 11, 269.	12.8	38
23	Going large(r): general discussion. Faraday Discussions, 2019, 217, 476-513.	3.2	1
24	Controlling internal degrees: general discussion. Faraday Discussions, 2019, 217, 138-171.	3.2	1
25	Pushing resolution in frequency and time: general discussion. Faraday Discussions, 2019, 217, 290-321.	3.2	1
26	The Gas-Phase Infrared Spectra of Xylyl Radicals. Journal of Physical Chemistry A, 2019, 123, 9573-9578.	2.5	7
27	Anharmonicity in the mid-infrared spectra of polycyclic aromatic hydrocarbons: molecular beam spectroscopy and calculations. Astronomy and Astrophysics, 2019, 628, A130.	5.1	21
28	Interactions of aggregating peptides probed by IR-UV action spectroscopy. Faraday Discussions, 2019, 217, 322-341.	3.2	15
29	Conformational assignment of gas phase peptides and their H-bonded complexes using far-IR/THz: IR-UV ion dip experiment, DFT-MD spectroscopy, and graph theory for mode assignment. Faraday Discussions, 2019, 217, 67-97.	3.2	13
30	Far-IR and UV spectral signatures of controlled complexation and microhydration of the polycyclic aromatic hydrocarbon acenaphthene. Physical Chemistry Chemical Physics, 2019, 21, 3414-3422.	2.8	25
31	Formation of Neutral Peptide Aggregates as Studied by Massâ€Selective IR Action Spectroscopy. Angewandte Chemie - International Edition, 2019, 58, 10537-10541.	13.8	10
32	Formation of Neutral Peptide Aggregates as Studied by Massâ€Selective IR Action Spectroscopy. Angewandte Chemie, 2019, 131, 10647-10651.	2.0	1
33	The Glycosylation Mechanisms of 6,3â€Uronic Acid Lactones. Angewandte Chemie - International Edition, 2019, 58, 8746-8751.	13.8	35
34	Competition between folded and extended structures of alanylalanine (Ala-Ala) in a molecular beam. Physical Chemistry Chemical Physics, 2019, 21, 14126-14132.	2.8	7
35	The Glycosylation Mechanisms of 6,3â€Uronic Acid Lactones. Angewandte Chemie, 2019, 131, 8838-8843.	2.0	9
36	Conformational Preferences of Isolated Glycylglycine (Gly-Gly) Investigated with IRMPD-VUV Action Spectroscopy and Advanced Computational Approaches. Journal of Physical Chemistry A, 2019, 123, 862-872.	2.5	10

#	Article	IF	CITATIONS
37	Direct Experimental Characterization of Glycosyl Cations by Infrared Ion Spectroscopy. Journal of the American Chemical Society, 2018, 140, 6034-6038.	13.7	68
38	Dimerization of the Benzyl Radical in a Highâ€Temperature Pyrolysis Reactor Investigated by IR/UV Ion Dip Spectroscopy. Chemistry - A European Journal, 2018, 24, 7647-7652.	3.3	18
39	Structural characterization of nucleotide 5′-triphosphates by infrared ion spectroscopy and theoretical studies. Physical Chemistry Chemical Physics, 2018, 20, 28319-28330.	2.8	20
40	Self-Reaction of <i>ortho</i> -Benzyne at High Temperatures Investigated by Infrared and Photoelectron Spectroscopy. Journal of Physical Chemistry A, 2018, 122, 9563-9571.	2.5	24
41	Dimerization of the Benzyl Radical in a High-Temperature Pyrolysis Reactor Investigated by IR/UV Ion Dip Spectroscopy. Chemistry - A European Journal, 2018, 24, 7535-7535.	3.3	0
42	Anharmonic, dynamic and functional level effects in far-infrared spectroscopy: Phenol derivatives. Journal of Molecular Spectroscopy, 2017, 342, 4-16.	1.2	10
43	Mapping gas phase dipeptide motions in the far-infrared and terahertz domain. Physical Chemistry Chemical Physics, 2017, 19, 13778-13787.	2.8	11
44	Corannulene and its complex with water: a tiny cup of water. Physical Chemistry Chemical Physics, 2017, 19, 14214-14223.	2.8	39
45	Fingerprints of inter- and intramolecular hydrogen bonding in saligenin–water clusters revealed by mid- and far-infrared spectroscopy. Physical Chemistry Chemical Physics, 2017, 19, 20343-20356.	2.8	21
46	Bottom-Up Elucidation of Glycosidic Bond Stereochemistry. Analytical Chemistry, 2017, 89, 4540-4549.	6.5	64
47	Products of the Propargyl Self-Reaction at High Temperatures Investigated by IR/UV Ion Dip Spectroscopy. Journal of Physical Chemistry A, 2017, 121, 181-191.	2.5	19
48	Capturing the Elusive Water Trimer from the Stepwise Growth of Water on the Surface of the Polycyclic Aromatic Hydrocarbon Acenaphthene. Journal of Physical Chemistry Letters, 2017, 8, 5744-5750.	4.6	48
49	Far-infrared amide IV-VI spectroscopy of isolated 2- and 4-Methylacetanilide. Journal of Chemical Physics, 2016, 145, 104309.	3.0	11
50	Far-infrared spectra of the tryptamine A conformer by IR-UV ion gain spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 32116-32124.	2.8	12
51	Infrared Action Spectroscopy of Low-Temperature Neutral Gas-Phase Molecules of Arbitrary Structure. Physical Review Letters, 2016, 117, 118101.	7.8	14
52	Far-Infrared Signatures of Hydrogen Bonding in Phenol Derivatives. Journal of Physical Chemistry Letters, 2016, 7, 1238-1243.	4.6	21
53	Aminophenol isomers unraveled by conformer-specific far-IR action spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 6275-6283.	2.8	19
54	Can far-IR action spectroscopy combined with BOMD simulations be conformation selective?. Physical Chemistry Chemical Physics, 2015, 17, 25905-25914.	2.8	23

#	Article	IF	CITATIONS
55	Resonant Infrared Multiple Photon Dissociation Spectroscopy of Anionic Nucleotide Monophosphate Clusters. Journal of Physical Chemistry B, 2015, 119, 7894-7901.	2.6	25
56	Fourier transform microwave spectroscopy of Ac-Ser-NH ₂ : the role of side chain interactions in peptide folding. Physical Chemistry Chemical Physics, 2015, 17, 20274-20280.	2.8	23
57	Formation of polycyclic aromatic hydrocarbons from bimolecular reactions of phenyl radicals at high temperatures. Physical Chemistry Chemical Physics, 2015, 17, 29064-29071.	2.8	31
58	IR Spectroscopic Techniques to Study Isolated Biomolecules. Topics in Current Chemistry, 2014, 364, 1-42.	4.0	58
59	A conformation-selective IR-UV study of the dipeptides Ac-Phe-Ser-NH2 and Ac-Phe-Cys-NH2: probing the SHâ<¯O and OHâ<¯O hydrogen bond interactions. Physical Chemistry Chemical Physics, 2014, 16, 10770.	2.8	37
60	In-depth exploration of the photophysics of a trinuclear palladium complex. Physical Chemistry Chemical Physics, 2014, 16, 8332-8338.	2.8	10
61	Gasâ€Phase Peptide Structures Unraveled by Farâ€IR Spectroscopy: Combining IRâ€UV Ionâ€Dip Experiments v Born–Oppenheimer Molecular Dynamics Simulations. Angewandte Chemie - International Edition, 2014, 53, 3663-3666.	vith 13.8	46
62	Unraveling the Benzocaine–Receptor Interaction at Molecular Level Using Mass-Resolved Spectroscopy. Journal of Physical Chemistry B, 2013, 117, 13472-13480.	2.6	11
63	Gas-phase salt bridge interactions between glutamic acid and arginine. Physical Chemistry Chemical Physics, 2013, 15, 16341.	2.8	15
64	Formation of water polyhedrons in propofol–water clusters. Physical Chemistry Chemical Physics, 2013, 15, 568-575.	2.8	16
65	Conformational Study of Z-Glu-OH and Z-Arg-OH: Dispersion Interactions versus Conventional Hydrogen Bonding. Journal of Physical Chemistry A, 2013, 117, 1216-1227.	2.5	31
66	Conformational Heterogeneity of Methyl 4-Hydroxycinnamate: A Gas-Phase UV–IR Spectroscopic Study. Journal of Physical Chemistry B, 2013, 117, 4798-4805.	2.6	18
67	Mid-infrared spectroscopy of molecular ions in helium nanodroplets. Journal of Chemical Physics, 2012, 136, 044305.	3.0	40
68	A combined spectroscopic and theoretical study of propofol·(H2O)3. Journal of Chemical Physics, 2012, 137, 074303.	3.0	18
69	Exploring microsolvation of the anesthetic propofol. Physical Chemistry Chemical Physics, 2012, 14, 4398.	2.8	40
70	Far/Mid-Infrared Signatures of Solvent–Solute Interactions in a Microhydrated Model Peptide Chain. Journal of Physical Chemistry Letters, 2012, 3, 3307-3311.	4.6	23
71	Phenylpropargyl Radicals and Their Dimerization Products: An IR/UV Double Resonance Study. Journal of Physical Chemistry A, 2012, 116, 8515-8522.	2.5	31
72	Structure of 2,4-Diaminopyrimidine–Theobromine Alternate Base Pairs. Journal of Physical Chemistry A, 2011, 115, 11423-11427.	2.5	8

#	Article	IF	CITATIONS
73	IR Spectroscopy on Jet-Cooled Isolated Two-Station Rotaxanes. Journal of Physical Chemistry A, 2011, 115, 9669-9675.	2.5	32
74	High-Resolution Spectroscopy of Jet-Cooled 1,1′-Diphenylethylene: Electronically Excited and Ionic States of a Prototypical Cross-Conjugated System. Journal of Physical Chemistry A, 2011, 115, 9399-9410.	2.5	19
75	IR Spectroscopy of Isolated Neutral and Protonated Adenine and 9â€Methyladenine. ChemPhysChem, 2011, 12, 1921-1927.	2.1	41
76	Isolated Gramicidin Peptides Probed by IR Spectroscopy. ChemPhysChem, 2011, 12, 1816-1821.	2.1	39
77	Infrared Spectra of Reactive Species Generated by Flash Pyrolysis in a Free Jet. ChemPhysChem, 2010, 11, 3228-3230.	2.1	6
78	Internal Proton Transfer Leading to Stable Zwitterionic Structures in a Neutral Isolated Peptide. Angewandte Chemie - International Edition, 2010, 49, 2332-2335.	13.8	38
79	Controlled Hydrogenâ€Bond Breaking in a Rotaxane by Discrete Solvation. Angewandte Chemie - International Edition, 2010, 49, 3896-3900.	13.8	32
80	Absorption spectroscopy of adenine, 9-methyladenine, and 2-aminopurine in helium nanodroplets. Physical Chemistry Chemical Physics, 2010, 12, 15600.	2.8	12
81	Conformations and vibrational spectra of a model tripeptide: change of secondary structure upon micro-solvation. Physical Chemistry Chemical Physics, 2010, 12, 3415.	2.8	32
82	In trap fragmentation and optical characterization of rotaxanes. Physical Chemistry Chemical Physics, 2010, 12, 12556.	2.8	2
83	Conformational Flexibility of a Rotaxane Thread Probed by Electronic Spectroscopy in Helium Nanodroplets. Journal of the American Chemical Society, 2009, 131, 12902-12903.	13.7	11
84	Stiff, and Sticky in the Right Places: Binding Interactions in Isolated Mechanically Interlocked Molecules Probed by Mid-Infrared Spectroscopy. Journal of the American Chemical Society, 2009, 131, 2428-2429.	13.7	33
85	Shaping of a Conformationally Flexible Molecular Structure for Spectroscopy. Angewandte Chemie - International Edition, 2008, 47, 3174-3179.	13.8	29
86	Molecular Structure and Function Probed by High-Resolution Spectroscopy. AIP Conference Proceedings, 2007, , .	0.4	0
87	Imaging of Ultrafast Molecular Elimination Reactions. Journal of the American Chemical Society, 2006, 128, 576-580.	13.7	16
88	Femtosecond Coincidence Imaging of Multichannel Multiphoton Dynamics. Physical Review Letters, 2004, 92, 123002.	7.8	44
89	Photoionization dynamics in CS fragmented from CS2 studied by high-resolution photoelectron spectroscopy. Canadian Journal of Chemistry, 2004, 82, 744-749.	1.1	1
90	Time-Resolved Coincidence Imaging of the Dissociative Ionization in CF3I. Springer Series in Chemical Physics, 2003, , 88-90.	0.2	0

#	Article	IF	CITATIONS
91	Rotationally resolved photoionization dynamics of hot CO fragmented from OCS. Journal of Chemical Physics, 2002, 116, 2776-2782.	3.0	27
92	Rotationally resolved photoelectron spectroscopy of hot N2 formed in the photofragmentation of N2O. Journal of Chemical Physics, 2001, 114, 9413-9420.	3.0	20
93	â€~Magnetic bottle' spectrometer as a versatile tool for laser photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2000, 112, 151-162.	1.7	23
94	Direct Identification of Pyrene Metabolites in Organs of the IsopodPorcellio scaberby Fluorescence Line Narrowing Spectroscopy. Analytical Chemistry, 1998, 70, 1182-1185.	6.5	13