
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/595921/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Residence of REE, Y, Th and U in Granites and Crustal Protoliths; Implications for the Chemistry of Crustal Melts. Journal of Petrology, 1996, 37, 521-552.	1.1	846

3	Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: an example from the Kinzigite Formation of Ivrea-Verbano, NW Italy. Geochimica Et Cosmochimica Acta, 1999, 63, 1133-1153.	1.6	379
4	Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: An example from the Spirit Mountain batholith, Nevada. Mineralogical Magazine, 2006, 70, 517-543.	0.6	350
5	The geochemistry of phosphorus in granite rocks and the effect of aluminium. Lithos, 1992, 29, 43-56.	0.6	175
6	A LA-ICP-MS EVALUATION OF Zr RESERVOIRS IN COMMON CRUSTAL ROCKS: IMPLICATIONS FOR Zr AND Hf GEOCHEMISTRY, AND ZIRCON-FORMING PROCESSES. Canadian Mineralogist, 2006, 44, 693-714.	0.3	155
7	Mafic Precursors, Peraluminous Granitoids, and Late Lamprophyres in the Avila Batholith: A Model for the Generation of Variscan Batholiths in Iberia. Journal of Geology, 1999, 107, 399-419.	0.7	151
8	Zircon Inheritance Reveals Exceptionally Fast Crustal Magma Generation Processes in Central Iberia during the Cambro-Ordovician. Journal of Petrology, 2007, 48, 2327-2339.	1.1	150
9	The sources of energy for crustal melting and the geochemistry of heat-producing elements. Lithos, 2012, 153, 278-291.	0.6	142
10	Platinum-group elements as petrological indicators in mafic-ultramafic complexes of the central and southern Urals: preliminary results. Tectonophysics, 1997, 276, 181-194.	0.9	130
11	The Eocene bimodal Piranshahr massif of the Sanandaj–Sirjan Zone, NW Iran: a marker of the end of the collision in the Zagros orogen. Journal of the Geological Society, 2009, 166, 53-69.	0.9	125
12	Differentiation of strongly peraluminous, perphosphorus granites: The pedrobernardo pluton, central Spain. Geochimica Et Cosmochimica Acta, 1994, 58, 2609-2627.	1.6	114
13	Structural and geochronological constraints on the evolution of the Bou Azzer Neoproterozoic ophiolite (Anti-Atlas, Morocco). Precambrian Research, 2010, 182, 1-14.	1.2	114
14	The Nature, Origin, and Thermal Influence of the Granite Source Layer of Central Iberia. Journal of Geology, 2003, 111, 579-595.	0.7	110
15	High-Ti amphibole as a petrogenetic indicator of magma chemistry: evidence for mildly alkalic-hybrid melts during evolution of Variscan basic–ultrabasic magmatism of Central Iberia. Contributions To Mineralogy and Petrology, 2009, 158, 69-98.	1.2	103
16	Geochemical variation in peridotite xenoliths and their constituent clinopyroxenes from Ray Pic (French Massif Central): implications for the composition of the shallow lithospheric mantle. Chemical Geology, 1999, 153, 11-35.	1.4	101
17	Controls on the trace element composition of crustal melts. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1996, 87, 33-41.	0.3	95
18	Two distinct Late Mesoproterozoic/Early Neoproterozoic basement provinces in central/eastern Dronning Maud Land, East Antarctica: The missing link, 15–21°E. Precambrian Research, 2015, 265, 249-272.	1.2	89

#	Article	IF	CITATIONS
19	Unraveling sources of A-type magmas in juvenile continental crust: Constraints from compositionally diverse Ediacaran post-collisional granitoids in the Katerina Ring Complex, southern Sinai, Egypt. Lithos, 2014, 192-195, 56-85.	0.6	88
20	Accurate determination of 87Rb/86Sr and 147Sm/144Nd ratios by inductively-coupled-plasma mass spectrometry in isotope geoscience: an alternative to isotope dilution analysis. Analytica Chimica Acta, 1998, 358, 227-233.	2.6	83
21	The palaeogeographic position of Central Iberia in Gondwana during the Ordovician: evidence from zircon chronology and Nd isotopes. Terra Nova, 2010, 22, 341-346.	0.9	83
22	Zircon ages of the metavolcanic rocks and metagranites of the Ollo de Sapo Domain in central Spain: implications for the Neoproterozoic to Early Palaeozoic evolution of Iberia. Geological Magazine, 2007, 144, 963-976.	0.9	82
23	Uralian magmatism: an overview. Tectonophysics, 1997, 276, 87-102.	0.9	81
24	Zircon Geochronology of the Ollo de Sapo Formation and the Age of the Cambro-Ordovician Rifting in Iberia. Journal of Geology, 2009, 117, 174-191.	0.7	79
25	Peraluminous granites frequently with mantle-like isotope compositions: the continental-type Murzinka and Dzhabyk batholiths of the eastern Urals. International Journal of Earth Sciences, 2002, 91, 3-19.	0.9	78
26	Pressure-Dependence of Rare Earth Element Distribution in Amphibolite- and Granulite- Grade Garnets. A LA-ICP-MS Study. Geostandards and Geoanalytical Research, 1997, 21, 253-270.	1.7	74
27	New insights from U–Pb zircon dating of Early Ordovician magmatism on the northern Gondwana margin: The Urra Formation (SW Iberian Massif, Portugal). Tectonophysics, 2008, 461, 114-129.	0.9	74
28	Recycling of continental crust into the mantle as revealed by Kytlym dunite zircons, Ural Mts, Russia. Terra Nova, 2001, 13, 407-412.	0.9	72
29	Deformation-driven differentiation of granitic magma: the Stepninsk pluton of the Uralides, Russia. Lithos, 2005, 81, 209-233.	0.6	72
30	U-Pb ion microprobe dating and Sr and Nd isotope geology of the Galiñeiro Igneous Complex. Lithos, 2009, 107, 227-238.	0.6	72
31	Zircon dating, Sr and Nd isotopes, and element geochemistry of the Khalifan pluton, NW Iran: Evidence for Variscan magmatism in a supposedly Cimmerian superterrane. Journal of Asian Earth Sciences, 2011, 40, 172-179.	1.0	72
32	Crystallization Dynamics of Granite Magma Chambers in the Absence of Regional Stress: Multiphysics Modeling with Natural Examples. Journal of Petrology, 2010, 51, 1541-1569.	1.1	71
33	Anomalous alkaline rocks of Soustov, Kola: evidence of mantle-derived metasomatic fluids affecting crustal materials. Contributions To Mineralogy and Petrology, 2001, 140, 554-566.	1.2	70
34	Zircon thermometry and U–Pb ion-microprobe dating of the gabbros and associated migmatites of the Variscan Toledo Anatectic Complex, Central Iberia. Journal of the Geological Society, 2006, 163, 847-855.	0.9	67
35	Geochronological data on the Rabat–Tiflet granitoids: Their bearing on the tectonics of the Moroccan Variscides. Journal of African Earth Sciences, 2010, 57, 1-13.	0.9	67
36	Age, Geochemistry and Petrogenesis of the Ultramafic Pipes in the Ivrea Zone, NW Italy. Journal of Petrology, 2001, 42, 433-457.	1.1	65

#	Article	IF	CITATIONS
37	U–Pb Zircon geochronology of the Cambro-Ordovician metagranites and metavolcanic rocks of central and NW Iberia. International Journal of Earth Sciences, 2013, 102, 1-23.	0.9	59
38	Single-zircon evaporation ages and Rb–Sr dating of four major Variscan batholiths of the Urals. Tectonophysics, 2000, 317, 93-108.	0.9	58
39	Within-plate calc-alkaline rocks: Insights from alkaline mafic magma–peraluminous crustal melt hybrid appinites of the Central Iberian Variscan continental collision. Lithos, 2009, 110, 50-64.	0.6	57
40	Kola alkaline province in the Paleozoic: evaluation of primary mantle magma composition and magma generation conditions. Russian Journal of Earth Sciences, 2001, 3, 1-32.	0.2	52
41	55 million years of continuous anatexis in Central Iberia: single-zircon dating of the PenÌfa Negra Complex. Journal of the Geological Society, 2004, 161, 255-263.	0.9	51
42	Generation and evolution of subduction-related batholiths from the central Urals: constraints on the P-T history of the Uralian orogen. Tectonophysics, 1997, 276, 103-116.	0.9	50
43	The â^1⁄4844Ma Moneiga quartz-diorites of the Sinai, Egypt: Evidence for Andean-type arc or rift-related magmatism in the Arabian-Nubian Shield?. Precambrian Research, 2009, 175, 161-168.	1.2	47
44	Petrogenesis of granitic unit of Naqadeh complex, Sanandaj–Sirjan Zone, NW Iran. Arabian Journal of Geosciences, 2011, 4, 59-67.	0.6	47
45	Th-REE- and Nb-Ta-accessory minerals in post-collisional Ediacaran felsic rocks from the Katerina Ring Complex (S. Sinai, Egypt): An assessment for the fractionation of Y/Nb, Th/Nb, La/Nb and Ce/Pb in highly evolved A-type granites. Lithos, 2016, 258-259, 173-196.	0.6	46
46	Genesis of Alkaline and Peralkaline Syenite-Granite Series: The Kharitonovo Pluton (Transbaikalia,) Tj ETQq0 0 C) rgBT /Over 0.7	lock 10 Tf 50
47	Microanalysis of minerals by an Excimer UV-LA-ICP-MS system. Chemical Geology, 1996, 133, 145-156.	1.4	44
48	SHRIMP U–Pb zircon dating of the Katerina Ring Complex: Insights into the temporal sequence of Ediacaran calc-alkaline to peralkaline magmatism in southern Sinai, Egypt. Gondwana Research, 2012, 21, 887-900.	3.0	44
49	The behavior of lithium in amphibolite- to granulite-facies rocks of the Ivrea–Verbano Zone, NW Italy. Chemical Geology, 2011, 289, 76-85.	1.4	41
50	Timing of Archean crust formation and cratonization in the Awsard-Tichla zone of the NW Reguibat Rise, West African Craton: A SHRIMP, Nd–Sr isotopes, and geochemical reconnaissance study. Precambrian Research, 2014, 242, 112-137.	1.2	41
51	Palaeogeography and crustal evolution of the Ossa–Morena Zone, southwest Iberia, and the North Gondwana margin during the Cambro-Ordovician: a review of isotopic evidence. International Geology Review, 2017, 59, 94-130.	1.1	41
52	2.46Ga kalsilite and nepheline syenites from the Awsard pluton, Reguibat Rise of the West African Craton, Morocco. Generation of extremely K-rich magmas at the Archean–Proterozoic transition. Precambrian Research, 2013, 224, 242-254.	1.2	40
53	Lamprophyre dikes as tectonic markers of late orogenic transtension timing and kinematics: A case study from the Central Iberian Zone. Tectonics, 2011, 30, .	1.3	39
54	SHRIMP dating and Nd isotope geology of the Archean terranes of the Uweinat-Kamil inlier, Egypt–Sudan–Libya. Precambrian Research, 2011, 189, 328-346.	1.2	39

#	Article	IF	CITATIONS
55	Metamorphic and deformational imprint of Cambrian–Lower Ordovician rifting in the Ossa-Morena Zone (Iberian Massif, Spain). Journal of Structural Geology, 2003, 25, 2077-2087.	1.0	38
56	Geochemical modeling of low melt-fraction anatexis in a peraluminous system: The Pena Negra Complex (central Spain). Geochimica Et Cosmochimica Acta, 1991, 55, 1859-1874.	1.6	37
57	Lu-Hf ratios of crustal rocks and their bearing on zircon Hf isotope model ages: The effects of accessories. Chemical Geology, 2018, 484, 179-190.	1.4	34
58	Contrasting SHRIMP U–Pb zircon ages of two carbonatite complexes from the peri-cratonic terranes of the Reguibat Shield: Implications for the lateral extension of the West African Craton. Gondwana Research, 2016, 38, 238-250.	3.0	33
59	The Calzadilla Ophiolite (SW Iberia) and the Ediacaran fore-arc evolution of the African margin of Gondwana. Gondwana Research, 2018, 58, 71-86.	3.0	32
60	Granitoids of the Uralides: Implications for the evolution of the orogen. Geophysical Monograph Series, 2002, , 211-232.	0.1	31
61	Jurassic guyots on the Southern Iberian Continental Margin: a model of isolated carbonate platforms on volcanic submarine edifices. Terra Nova, 1997, 9, 163-166.	0.9	30
62	Diffusion-induced disturbances of the U–Pb isotope system in pre-magmatic zircon and their influence on SIMS dating. A numerical study. Chemical Geology, 2013, 349-350, 1-17.	1.4	30
63	Magnesium isotopic systematics of metapelite in the deep crust and implications for granite petrogenesis. Geochemical Perspectives Letters, 2015, , 75-83.	1.0	30
64	Geodynamic settings and history of the Paleozoic intrusive magmatism of the central and southern Urals: Results of zircon dating. Geotectonics, 2007, 41, 465-486.	0.2	29
65	First evidence for Cambrian rift-related magmatism in the West African Craton margin: The Derraman Peralkaline Felsic Complex. Gondwana Research, 2016, 36, 423-438.	3.0	29
66	Anomalous xenocryst dispersion during tonalite–granodiorite crystal mush hybridization in the mid crust: Mineralogical and geochemical evidence from Variscan appinites (Avila Batholith, Central) Tj ETQq0 0 0 rgl	3T ØØverlog	ck 2180 Tf 50 29
67	Trace elements in minerals as indicators of the evolution of alkaline ultrabasic dike series: LA-ICP-MS data for the magmatic provinces of northeastern Fennoscandia and Germany. Petrology, 2009, 17, 46-72.	0.2	27
68	Shoshonites, vaugnerites and potassic lamprophyres: similarities and differences between â€~ultra'-high-K rocks. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2008, 99, 159-175.	0.3	25
69	Kalsilite-bearing plutonic rocks: The deep-seated Archean Awsard massif of the Reguibat Rise, South Morocco, West African Craton. Earth-Science Reviews, 2014, 138, 1-24.	4.0	25
70	Mountain building processes during continent–continent collision in the Uralides. Earth-Science Reviews, 2008, 89, 177-195.	4.0	24
71	The Bir Safsaf Precambrian inlier of South West Egypt revisited. A model for ~1.5Ga TDM late Pan-African granite generation by crustal reworking. Lithos, 2011, 125, 897-914.	0.6	23
72	Zircon stability grids in crustal partial melts: implications for zircon inheritance. Contributions To Mineralogy and Petrology, 2021, 176, 1.	1.2	23

#	Article	IF	CITATIONS
73	Tectonic processes in the Southern and Middle Urals: an overview. Geological Society Memoir, 2006, 32, 407-419.	0.9	22
74	The abundance of ammonium in the granites of central Spain, and the behaviour of the ammonium ion during anatexis and fractional crystallization. Mineralogy and Petrology, 1996, 56, 105-123.	0.4	20
75	Proterozoic Gremyakha-Vyrmes Polyphase Massif, Kola Peninsula: An example of mixing basic and alkaline mantle melts. Petrology, 2006, 14, 361-389.	0.2	20
76	The Archean to Late-Paleozoic architecture of the Oulad Dlim Massif, the main Gondwanan indenter during the collision with Laurentia. Earth-Science Reviews, 2020, 208, 103273.	4.0	19
77	Mineralogical evidence for lamproite magma mixing and storage at mantle depths: Socovos fault lamproites, SE Spain. Lithos, 2016, 266-267, 182-201.	0.6	18
78	Experimental evidence for the preservation of U-Pb isotope ratios in mantle-recycled crustal zircon grains. Scientific Reports, 2018, 8, 12904.	1.6	18
79	Zircon xenocryst evidence for crustal recycling at the Mid-Atlantic Ridge. Lithos, 2020, 354-355, 105361.	0.6	18
80	lsotopic-geochemical features and age of zircons in dunites of the platinum-bearing type Uralian massifs: Petrogenetic implications. Petrology, 2009, 17, 503-520.	0.2	17
81	Initial Pangean rifting north of the West African Craton: Insights from late Permian U-Pb and 40Ar/39Ar dating of alkaline magmatism from the Eastern Anti-Atlas (Morocco). Journal of Geodynamics, 2019, 132, 101670.	0.7	15
82	The origin of mafic rocks in the Naqadeh intrusive complex, Sanandaj-Sirjan Zone, NW Iran. Arabian Journal of Geosciences, 2011, 4, 1207-1214.	0.6	14
83	A reassessment of the amphibole-plagioclase NaSi-CaAl exchange thermometer with applications to igneous and high-grade metamorphic rocks. American Mineralogist, 2021, 106, 782-800.	0.9	14
84	Geochronological constraints on the evolution of a suture: the Ossa-Morena/Central Iberian contact (Variscan Belt, south-west Iberian Peninsula). Geologische Rundschau: Zeitschrift Fur Allgemeine Geologie, 1995, 84, 375.	1.3	14
85	Zircon crystallization in low-Zr mafic magmas: Possible or impossible?. Chemical Geology, 2022, 602, 120898.	1.4	14
86	Polygenous zircons in the Adui batholith (middle Urals). Doklady Earth Sciences, 2006, 410, 1096-1100.	0.2	13
87	A method for modelling mass balance in partial melting and anatectic leucosome segregation. Journal of Metamorphic Geology, 1989, 7, 619-628.	1.6	12
88	Constraints of mantle and crustal sources and interaction during orogenesis: A zircon SHRIMP U-Th-Pb and O isotope study of the â€~calc-alkaline' Brovales pluton, Ossa-Morena Zone, Iberian Variscan Belt. Lithos, 2019, 324-325, 661-683.	0.6	12
89	Contrasting high-Mg, high-K rocks in Central Iberia: the appinite—vaugnerite conundrum and their (non-existent) relation with arc magmatism. Journal of Iberian Geology, 2021, 47, 235-261.	0.7	12
90	Crystal chemistry of dioctahedral micas from peraluminous granites: the Pedrobernardo pluton (Central Spain). European Journal of Mineralogy, 2003, 15, 543-550.	0.4	11

#	Article	IF	CITATIONS
91	The U–Pb SHRIMP age of zircons from diorites of the Tomino–Bereznyaki ore field (<i>South Urals,) Tj ETQq1 54, 1332-1339.</i>	1 0.7843 0.3	14 rgBT /Ov 11
92	The polychronous nature of zircons in gabbroids of the Ural Platinum Belt and the issue of the Precambrian in the Tagil Synclinorium. Doklady Earth Sciences, 2007, 413, 457-461.	0.2	10
93	Metasomatic stages and scapolitization effects on chemical composition of Pasveh pluton, NW Iran. Journal of Earth Science (Wuhan, China), 2011, 22, 619-631.	1.1	10
94	Petrogenesis of Derraman Peralkaline granite (Oulad Dlim Massif, West African Craton Margin,) Tj ETQq0 0 0 rgBT Geoscience, 2018, 350, 236-244.	/Overlock 0.4	2 10 Tf 50 62 10
95	The Archean kalsilite-nepheline syenites of the Awsard intrusive massif (Reguibat Shield, West African) Tj ETQq1 1 Sciences, 2017, 127, 16-50.	0.784314 0.9	rgBT /Over 9
96	High-P amphibolite-facies metamorphism in the Adrar–Souttouf Metamafic Complex, Oulad Dlim Massif (West African Craton margin, Morocco). Comptes Rendus - Geoscience, 2018, 350, 245-254.	0.4	9
97	Title is missing!. Estudios Geologicos, 1999, 55, .	0.7	9
98	Intrusive magmatism during early evolutionary stages of the Ural epioceanic orogen: U-Pb geochronology (LA ICP MS, NORDSIM, and SHRIMP II), geochemistry, and evolutionary tendencies. Geochemistry International, 2009, 47, 143-162.	0.2	8
99	Rare earth elements in rocks and minerals from alkaline plutons of the Kola Peninsula, NW Russia, as indicators of alkaline magma evolution. Russian Journal of Earth Sciences, 2002, 4, 187-209.	0.2	7
100	Routine accurate determination of silica in silicate materials by atomic-absorption spectrophotometry and subsequent computation. Talanta, 1980, 27, 69-70.	2.9	6
101	Quartzite crests in Paleoproterozoic granites (Anti-Atlas, Morocco); a hint to Pan-African deformation of the West African Craton margin. Journal of African Earth Sciences, 2019, 157, 103501.	0.9	6
102	The Beni Bousera marbles, record of a Triassic-Early Jurassic hyperextended margin in the Alpujarrides-Sebtides units (Rif belt, Morocco). Bulletin - Societie Geologique De France, 2021, 192, 26.	0.9	6
103	Determination of low amounts of strontium in geological materials by flameless atomic absorption spectrophotometry. Chemical Geology, 1978, 23, 171-178.	1.4	5
104	U–Pb Dating, Oxygen and Hafnium Isotope Ratios of Zircon from Rocks of Oceanic Core Complexes at the Mid-Atlantic Ridge: Evidence for the Interaction of Contemporary and Ancient Crusts in the Spreading Center of the Ocean Floor. Doklady Earth Sciences, 2019, 489, 1396-1401.	0.2	5
105	Compositional Evolution of the Variscan Intra-Orogenic Extensional Magmatism in the Valencia del Ventoso Plutonic Complex, Ossa-Morena Zone (SW Iberia): A View from Amphibole Compositional Relationships. Minerals (Basel, Switzerland), 2021, 11, 431.	0.8	5
106	Multiple Melting of a Heterogeneous Mantle and Episodic Accretion of Oceanic Crust in a Spreading Zone: Zircon U-Pb Age and Hf-O Isotope Evidence from an Oceanic Core Complex of the Mid-Atlantic Ridge. Petrology, 2022, 30, 1-24.	0.2	5
107	Controls on the trace element composition of crustal melts. , 1996, , .		4
108	Age and Isotope-Geochemical Features of the Murzinka–Adui Metamorphic Complex in Connection with the Problem of Formation of the Murzinka Interformational Granite Pluton. Russian Geology and Geophysics, 2019, 60, 287-308.	0.3	4

#	Article	IF	CITATIONS
109	Nitrogen loss and isotopic fractionation during granulite-facies metamorphism in the lower crust (Ivrea Zone, NW Italy). Chemical Geology, 2021, 584, 120475.	1.4	4
110	Estimation of Pressure and Temperature of Intrusive Rocks Crystallisation: A Case Study of Naqadeh, Pasveh and Delkeh Plutons, W Iran. Journal of Applied Sciences, 2008, 8, 934-945.	0.1	4
111	Evaluation of Syenite as Feldspar Source: Piranshahr Pluton, NW of Iran. Natural Resources Research, 2012, 21, 279-283.	2.2	3
112	Age of zircon from apoharzburgite serpentinite representing mantle of the Uralian paleoocean. Geochemistry International, 2017, 55, 675-682.	0.2	3
113	The Quaternary Kurobegawa Granite: an example of a deeply dissected resurgent pluton. Scientific Reports, 2021, 11, 22059.	1.6	3
114	Experimental Annealing of Zircon: Influence of Inclusions on Stability, Intracrystalline Melt Migration, Common Lead Leaching, and Permeability to Fluids. ACS Earth and Space Chemistry, 2022, 6, 288-307.	1.2	3
115	Zircons and the problem of Precambrian in the main granite belt of the Urals: Evidence from the Kozhubaevo Metamorphic Complex. Doklady Earth Sciences, 2006, 408, 612-616.	0.2	2
116	Evidence for Sveconorwegian (Grenvillian) magmatic activity in the Northwestern Baltic Shield. Doklady Earth Sciences, 2006, 410, 1034-1037.	0.2	2
117	Tectonomagmatic development of the Eocene Pasevh pluton (NW Iran): Implications for the Arabia-Eurasia collision. Journal of Asian Earth Sciences, 2020, 203, 104551.	1.0	2
118	Reply to discussion on the Eocene bimodal Piranshahr massif of the Sanadaj–Sirjan Zone, West Iran: a marker of the end of collision in the Zagros orogen. Journal of the Geological Society, 2009, 166, 983-984.	0.9	1
119	The role of H2O in chemical fractionation by anatexis, case study: The almohalla formation, central Spain. Chemical Geology, 1988, 70, 3.	1.4	0
120	Subduction Zone Magmatism. Yoshiyuki Tatsumi and Steve Eggins. Surveys in Geophysics, 1997, 18, 535-536.	2.1	0
121	On the Seventh Hutton Symposium on the origin of granites and related rocks. Lithos, 2012, 153, 1-2.	0.6	0
122	A Cautionary Note on Amphibole Geobarometry. Environmental Sciences Proceedings, 2021, 6, .	0.3	0
123	Zircon U–Pb geochronology and Sr-Nd-O isotopic constraints on the petrogenesis of the Jálama pluton (Central Iberian Zone, Spain). Lithos, 2021, 386-387, 106002.	0.6	0
124	The roles of partial melting of metasomatised mantle, magma mixing at continental crust level and fractionation in calc-alkaline minette genesis, SE Spain. International Geology Review, 2024, 66, 463-503.	1.1	0