
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/595908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TRY – a global database of plant traits. Global Change Biology, 2011, 17, 2905-2935.	9.5	2,002
2	Essential Biodiversity Variables. Science, 2013, 339, 277-278.	12.6	1,150
3	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
4	Plant functional traits have globally consistent effects on competition. Nature, 2016, 529, 204-207.	27.8	655
5	Core microbiomes for sustainable agroecosystems. Nature Plants, 2018, 4, 247-257.	9.3	639
6	Plant functional trait change across a warming tundra biome. Nature, 2018, 562, 57-62.	27.8	451
7	Global patterns of leaf mechanical properties. Ecology Letters, 2011, 14, 301-312.	6.4	418
8	Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. Journal of Experimental Botany, 2006, 57, 291-302.	4.8	417
9	Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytologist, 2017, 214, 1447-1463.	7.3	412
10	Optimal stomatal behaviour around the world. Nature Climate Change, 2015, 5, 459-464.	18.8	397
11	Which is a better predictor of plant traits: temperature or precipitation?. Journal of Vegetation Science, 2014, 25, 1167-1180.	2.2	323
12	Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Functional Ecology, 2004, 18, 419-425.	3.6	250
13	Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytologist, 2019, 222, 768-784.	7.3	171
14	Mapping local and global variability in plant trait distributions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10937-E10946.	7.1	159
15	Mechanisms underlying global temperatureâ€related patterns in leaf longevity. Global Ecology and Biogeography, 2013, 22, 982-993.	5.8	121
16	Effects of Light and Nutrient Availability on Leaf Mechanical Properties of Plantago major: A Conceptual Approach. Annals of Botany, 2008, 101, 727-736.	2.9	100
17	Seasonal change in the balance between capacities of RuBP carboxylation and RuBP regeneration affects CO2 response of photosynthesis in Polygonum cuspidatum. Journal of Experimental Botany, 2005, 56, 755-763.	4.8	97
18	Wind and mechanical stimuli differentially affect leaf traits in <i>Plantago major</i> . New Phytologist, 2010, 188, 554-564.	7.3	96

#	Article	IF	CITATIONS
19	Global legume diversity assessment: Concepts, key indicators, and strategies. Taxon, 2013, 62, 249-266.	0.7	85
20	The balance between RuBP carboxylation and RuBP regeneration: a mechanism underlying the interspecific variation in acclimation of photosynthesis to seasonal change in temperature. Functional Plant Biology, 2005, 32, 903.	2.1	82
21	Tradeâ€off between light interception efficiency and light use efficiency: implications for species coexistence in oneâ€sided light competition. Journal of Ecology, 2014, 102, 167-175.	4.0	82
22	AusTraits, a curated plant trait database for the Australian flora. Scientific Data, 2021, 8, 254.	5.3	73
23	The relationship between stem biomechanics and wood density is modified by rainfall in 32 Australian woody plant species. New Phytologist, 2010, 185, 493-501.	7.3	66
24	A novel method of measuring leaf epidermis and mesophyll stiffness shows the ubiquitous nature of the sandwich structure of leaf laminas in broad-leaved angiosperm species. Journal of Experimental Botany, 2015, 66, 2487-2499.	4.8	65
25	Efficacy of generic allometric equations for estimating biomass: a test in Japanese natural forests. Ecological Applications, 2015, 25, 1433-1446.	3.8	56
26	Elevated CO 2 and nitrogen availability have interactive effects on canopy carbon gain in rice. New Phytologist, 2004, 161, 459-471.	7.3	52
27	Global plant trait relationships extend to the climatic extremes of the tundra biome. Nature Communications, 2020, 11, 1351.	12.8	52
28	Systemic induced resistance: a riskâ€spreading strategy in clonal plant networks?. New Phytologist, 2008, 179, 1142-1153.	7.3	48
29	Leaf-fracture properties correlated with nutritional traits in nine Australian seagrass species: implications for susceptibility to herbivory. Marine Ecology - Progress Series, 2012, 458, 89-102.	1.9	47
30	Does leaf photosynthesis adapt to CO ₂ â€enriched environments? An experiment on plants originating from three natural CO ₂ springs. New Phytologist, 2009, 182, 698-709.	7.3	45
31	A comprehensive analysis of mechanical and morphological traits in temperate and tropical seagrass species. Marine Ecology - Progress Series, 2016, 551, 81-94.	1.9	45
32	Reconciling speciesâ€level vs plastic responses of evergreen leaf structure to light gradients: shade leaves punch above their weight. New Phytologist, 2010, 186, 429-438.	7.3	43
33	The importance of leaf cuticle for carbon economy and mechanical strength. New Phytologist, 2012, 196, 441-447.	7.3	43
34	Challenges to understand plant responses to wind. Plant Signaling and Behavior, 2011, 6, 1057-1059.	2.4	41
35	Safety and streamlining of woody shoots in wind: an empirical study across 39 species in tropical Australia. New Phytologist, 2012, 193, 137-149.	7.3	41
36	Phosphorus and nitrogen resorption from different chemical fractions in senescing leaves of tropical tree species on Mount Kinabalu, Borneo. Oecologia, 2017, 185, 171-180.	2.0	40

#	Article	IF	CITATIONS
37	Intraspecific variation in temperature dependence of gas exchange characteristics among <i>Plantago asiatica</i> ecotypes from different temperature regimes. New Phytologist, 2007, 176, 356-364.	7.3	39
38	Plant responses to elevated CO2 concentration at different scales: leaf, whole plant, canopy, and population. Ecological Research, 2005, 20, 243-253.	1.5	38
39	Leaf mechanical strength and photosynthetic capacity vary independently across 57 subtropical forest species with contrasting light requirements. New Phytologist, 2019, 223, 607-618.	7.3	37
40	Effects of elevated CO2 concentration on seed production in C3 annual plants. Journal of Experimental Botany, 2011, 62, 1523-1530.	4.8	35
41	Small and slow is safe: On the drought tolerance of tropical tree species. Global Change Biology, 2022, 28, 2622-2638.	9.5	35
42	Nitrogen resorption from leaves under different growth irradiance in three deciduous woody species. Plant Ecology, 2005, 178, 29-37.	1.6	34
43	Leaf Anatomy and Function. Advances in Photosynthesis and Respiration, 2018, , 97-139.	1.0	34
44	Phenotypic and genetic differences in a perennial herb across a natural gradient of CO2 concentration. Oecologia, 2011, 165, 809-818.	2.0	33
45	Effect of elevated CO2 levels on leaf starch, nitrogen and photosynthesis of plants growing at three natural CO2 springs in Japan. Ecological Research, 2007, 22, 475-484.	1.5	31
46	Effects of logging and recruitment on community phylogenetic structure in 32 permanent forest plots of Kampong Thom, Cambodia. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140008.	4.0	31
47	Influence of leaf trichomes on boundary layer conductance and gasâ€exchange characteristics in <i>Metrosideros polymorpha</i> (Myrtaceae). Biotropica, 2017, 49, 482-492.	1.6	28
48	Revisiting the Functional Basis of Sclerophylly Within the Leaf Economics Spectrum of Oaks: Different Roads to Rome. Current Forestry Reports, 2020, 6, 260-281.	7.4	26
49	Effects of atmospheric CO2 concentration, irradiance, and soil nitrogen availability on leaf photosynthetic traits of Polygonum sachalinense around natural CO2 springs in northern Japan. Oecologia, 2010, 164, 41-52.	2.0	24
50	A quantitative analysis of phenotypic variations of Metrosideros polymorpha within and across populations along environmental gradients on Mauna Loa, Hawaii. Oecologia, 2016, 180, 1049-1059.	2.0	24
51	Direct and indirect effects of tidal elevation on eelgrass decomposition. Marine Ecology - Progress Series, 2012, 456, 53-62.	1.9	23
52	Contextâ€dependent changes in the functional composition of tree communities along successional gradients after landâ€use change. Journal of Ecology, 2016, 104, 1347-1356.	4.0	22
53	The population genomic signature of environmental association and gene flow in an ecologically divergent tree species <i>Metrosideros polymorpha</i> (Myrtaceae). Molecular Ecology, 2017, 26, 1515-1532.	3.9	22
54	Does the leaf economic spectrum hold within plant functional types? A Bayesian multivariate trait metaâ€analysis. Ecological Applications, 2020, 30, e02064.	3.8	22

#	Article	IF	CITATIONS
55	Simulating functional diversity of European natural forests along climatic gradients. Journal of Biogeography, 2020, 47, 1069-1085.	3.0	19
56	The acquisitive–conservative axis of leaf trait variation emerges even in homogeneous environments. Annals of Botany, 2022, 129, 709-722.	2.9	18
57	Global patterns of leaf construction traits and their covariation along climate and soil environmental gradients. New Phytologist, 2021, 232, 1648-1660.	7.3	18
58	High exposure of global tree diversity to human pressure. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	18
59	A cost–benefit analysis of leaf carbon economy with consideration of seasonal changes in leaf traits for sympatric deciduous and evergreen congeners: implications for their coexistence. New Phytologist, 2022, 234, 1047-1058.	7.3	16
60	Canopy structure of tropical and sub-tropical rain forests in relation to conifer dominance analysed with a portable LIDAR system. Annals of Botany, 2013, 112, 1899-1909.	2.9	13
61	Forest canopy height variation in relation to topography and forest types in central Japan with LiDAR. Forest Ecology and Management, 2022, 503, 119792.	3.2	10
62	Vertical and horizontal light heterogeneity along gradients of secondary succession in cool―and warmâ€ŧemperate forests. Journal of Vegetation Science, 2022, 33, .	2.2	9
63	The Leaf Economics Spectrum and its Underlying Physiological and Anatomical Principles. Advances in Photosynthesis and Respiration, 2018, , 451-471.	1.0	8
64	A simple method to estimate the rate of the bamboo expansion based on oneâ€ŧime measurement of spatial distribution of culms. Ecological Research, 2018, 33, 1137-1143.	1.5	8
65	Leaf trichomes in Metrosideros polymorpha can contribute to avoiding extra water stress by impeding gall formation. Annals of Botany, 2020, 125, 533-542.	2.9	8
66	How plants grow under gravity conditions besides 1 g: perspectives from hypergravity and space experiments that employ bryophytes as a model organism. Plant Molecular Biology, 2021, 107, 279-291.	3.9	8
67	Wider crown shyness between broadâ€leaved tree species than between coniferous tree species in a mixed forest of <i>Castanopsis cuspidata</i> and <scp><i>Chamaecyparis obtusa</i></scp> . Ecological Research, 2021, 36, 733-743.	1.5	6
68	Coordination of leaf economics traits within the family of the world's fastest growing plants (Lemnaceae). Journal of Ecology, 2021, 109, 2950-2962.	4.0	6
69	Massive investments in flowers were in vain: Mass flowering after a century did not bear fruit in the bamboo <i>Phyllostachys nigra</i> var. <i>henonis</i> . Plant Species Biology, 2022, 37, 78-90.	1.0	6
70	Rhizomes play significant roles in biomass accumulation, production and carbon turnover in a stand of the tall bamboo <i>Phyllostachys edulis</i> . Journal of Forest Research, 2023, 28, 42-50.	1.4	6
71	Plant responses to elevated CO2 concentration at different scales: leaf, whole plant, canopy, and population. , 2005, , 3-13.		4
72	Trait–abundance relationships in tree communities along temperature and successional gradients. Journal of Vegetation Science, 2020, 31, 551-560.	2.2	4

#	Article	IF	CITATIONS
73	Estimating the flexural rigidity of Arabidopsis inflorescence stems: Free-vibration test vs. three-point bending test. Plant Biotechnology, 2020, 37, 471-474.	1.0	4
74	Decadesâ€long effects of high CO ₂ concentration on soil nitrogen dynamics at a natural CO ₂ spring. Ecological Research, 2017, 32, 215-225.	1.5	3
75	Demography and selection analysis of the incipient adaptive radiation of a Hawaiian woody species. PLoS Genetics, 2022, 18, e1009987.	3.5	3
76	Like a jungle sometimes: how leaves survive in the rainforest understory. New Phytologist, 2012, 195, 507-509.	7.3	1