
Miqueias Lopes-Pacheco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5958336/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of Cas9 and Cas12a CRISPR editing methods to correct the W1282X-CFTR mutation. Journal of Cystic Fibrosis, 2022, 21, 181-187.	0.7	17
2	Rescue of Mutant CFTR Trafficking Defect by the Investigational Compound MCG1516A. Cells, 2022, 11, 136.	4.1	11
3	CFTR interactome mapping using the mammalian membrane twoâ€hybrid highâ€ŧhroughput screening system. Molecular Systems Biology, 2022, 18, e10629.	7.2	13
4	Laboratory Biomarkers for Diagnosis and Prognosis in COVID-19. Frontiers in Immunology, 2022, 13, 857573.	4.8	70
5	Pathogenesis of Multiple Organ Injury in COVID-19 and Potential Therapeutic Strategies. Frontiers in Physiology, 2021, 12, 593223.	2.8	113
6	Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Lung Diseases: Current Status and Perspectives. Frontiers in Cell and Developmental Biology, 2021, 9, 600711.	3.7	51
7	Oxidative Stress-Derived Mitochondrial Dysfunction in Chronic Obstructive Pulmonary Disease: A Concise Review. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-11.	4.0	7
8	Discovery of CFTR modulators for the treatment of cystic fibrosis. Expert Opinion on Drug Discovery, 2021, 16, 897-913.	5.0	38
9	Mitochondria-Rich Fraction Isolated From Mesenchymal Stromal Cells Reduces Lung and Distal Organ Injury in Experimental Sepsis*. Critical Care Medicine, 2021, 49, e880-e890.	0.9	15
10	Mesenchymal Stromal Cells From Emphysematous Donors and Their Extracellular Vesicles Are Unable to Reverse Cardiorespiratory Dysfunction in Experimental Severe Emphysema. Frontiers in Cell and Developmental Biology, 2021, 9, 661385.	3.7	14
11	Pharmacological Modulation of Ion Channels for the Treatment of Cystic Fibrosis. Journal of Experimental Pharmacology, 2021, Volume 13, 693-723.	3.2	24
12	Is there a place for mesenchymal stromal cell-based therapies in the therapeutic armamentarium against COVID-19?. Stem Cell Research and Therapy, 2021, 12, 425.	5.5	15
13	Current understanding of the therapeutic benefits of mesenchymal stem cells in acute respiratory distress syndrome. Cell Biology and Toxicology, 2020, 36, 83-102.	5.3	56
14	Multiple doses of adipose tissue-derived mesenchymal stromal cells induce immunosuppression in experimental asthma. Stem Cells Translational Medicine, 2020, 9, 250-260.	3.3	34
15	Autologous bone marrow-derived mononuclear cell therapy in three patients with severe asthma. Stem Cell Research and Therapy, 2020, 11, 167.	5.5	14
16	Characterization of the mechanism of action of RDR01752, a novel corrector of F508del-CFTR. Biochemical Pharmacology, 2020, 180, 114133.	4.4	14
17	Eicosapentaenoic acid potentiates the therapeutic effects of adipose tissue-derived mesenchymal stromal cells on lung and distal organ injury in experimental sepsis. Stem Cell Research and Therapy, 2019, 10, 264.	5.5	33
18	Mesenchymal Stromal Cells Are More Effective Than Their Extracellular Vesicles at Reducing Lung Injury Regardless of Acute Respiratory Distress Syndrome Etiology. Stem Cells International, 2019, 2019, 1-15.	2.5	47

#	Article	IF	CITATIONS
19	Current understanding of the immunosuppressive properties of mesenchymal stromal cells. Journal of Molecular Medicine, 2019, 97, 605-618.	3.9	81
20	Editorial: Emerging Therapeutic Approaches for Cystic Fibrosis. Frontiers in Pharmacology, 2019, 10, 1440.	3.5	6
21	Serum from Asthmatic Mice Potentiates the Therapeutic Effects of Mesenchymal Stromal Cells in Experimental Allergic Asthma. Stem Cells Translational Medicine, 2019, 8, 301-312.	3.3	40
22	Increases in cytosolic Ca2+ induce dynamin- and calcineurin-dependent internalisation of CFTR. Cellular and Molecular Life Sciences, 2019, 76, 977-994.	5.4	13
23	CFTR Modulators: The Changing Face of Cystic Fibrosis in the Era of Precision Medicine. Frontiers in Pharmacology, 2019, 10, 1662.	3.5	287
24	Effects of mesenchymal stromal cells play a role the oxidant/antioxidant balance in a murine model of asthma. Allergologia Et Immunopathologia, 2018, 46, 136-143.	1.7	22
25	Mesenchymal Stem Cells From Bone Marrow, Adipose Tissue, and Lung Tissue Differentially Mitigate Lung and Distal Organ Damage in Experimental Acute Respiratory Distress Syndrome*. Critical Care Medicine, 2018, 46, e132-e140.	0.9	59
26	Impact of one versus two doses of mesenchymal stromal cells on lung and cardiovascular repair in experimental emphysema. Stem Cell Research and Therapy, 2018, 9, 296.	5.5	22
27	Self-complementary and tyrosine-mutant rAAV vectors enhance transduction in cystic fibrosis bronchial epithelial cells. Experimental Cell Research, 2018, 372, 99-107.	2.6	5
28	Impact of different intratracheal flows during lung decellularization on extracellular matrix composition and mechanics. Regenerative Medicine, 2018, 13, 519-530.	1.7	5
29	Eicosapentaenoic Acid Enhances the Effects of Mesenchymal Stromal Cell Therapy in Experimental Allergic Asthma. Frontiers in Immunology, 2018, 9, 1147.	4.8	36
30	Combination of Correctors Rescues CFTR Transmembrane-Domain Mutants by Mitigating their Interactions with Proteostasis. Cellular Physiology and Biochemistry, 2017, 41, 2194-2210.	1.6	41
31	Therapeutic effects of bone marrow-derived mononuclear cells from healthy or silicotic donors on recipient silicosis mice. Stem Cell Research and Therapy, 2017, 8, 259.	5.5	14
32	Cell-Based Therapy for Silicosis. Stem Cells International, 2016, 2016, 1-9.	2.5	73
33	Dasatinib Reduces Lung Inflammation and Fibrosis in Acute Experimental Silicosis. PLoS ONE, 2016, 11, e0147005.	2.5	58
34	CFTR Modulators: Shedding Light on Precision Medicine for Cystic Fibrosis. Frontiers in Pharmacology, 2016, 7, 275.	3.5	115
35	Association with Amino Acids Does Not Enhance Efficacy of Polymerized Liposomes As a System for Lung Gene Delivery. Frontiers in Physiology, 2016, 7, 151.	2.8	3
36	Moderate Aerobic Training Improves Cardiorespiratory Parameters in Elastase-Induced Emphysema. Frontiers in Physiology, 2016, 7, 329.	2.8	12

MIQUEIAS LOPES-PACHECO

#	Article	IF	CITATIONS
37	Correctors Rescue CFTR Mutations in Nucleotideâ€Binding Domain 1 (NBD1) by Modulating Proteostasis. ChemBioChem, 2016, 17, 493-505.	2.6	26
38	Rescue of NBD2 Mutants N1303K and S1235R of CFTR by Small-Molecule Correctors and Transcomplementation. PLoS ONE, 2015, 10, e0119796.	2.5	40
39	Therapeutic effects of LASSBio-596 in an elastase-induced mouse model of emphysema. Frontiers in Physiology, 2015, 6, 267.	2.8	18
40	Rescuing Trafficking Mutants of the ATP-binding Cassette Protein, ABCA4, with Small Molecule Correctors as a Treatment for Stargardt Eye Disease. Journal of Biological Chemistry, 2015, 290, 19743-19755.	3.4	41
41	Combination of Correctors Rescue ΔF508-CFTR by Reducing Its Association with Hsp40 and Hsp27. Journal of Biological Chemistry, 2015, 290, 25636-25645.	3.4	40
42	Pilot safety study of intrabronchial instillation of bone marrow-derived mononuclear cells in patients with silicosis. BMC Pulmonary Medicine, 2015, 15, 66.	2.0	28
43	Effects of bone-marrow derived mononuclear cells from silicotic and healthy donors in experimental silicosis. , 2015, , .		0
44	Infusion of Bone Marrow Mononuclear Cells Reduces Lung Fibrosis but Not Inflammation in the Late Stages of Murine Silicosis. PLoS ONE, 2014, 9, e109982.	2.5	24
45	Effects of different mesenchymal stromal cell sources and delivery routes in experimental emphysema. Respiratory Research, 2014, 15, 118.	3.6	141
46	Single Tyrosine Mutation in AAV8 Vector Capsid Enhances Gene Lung Delivery and Does Not Alter Lung Morphofunction in Mice. Cellular Physiology and Biochemistry, 2014, 34, 681-690.	1.6	11
47	Effects of Bone Marrow–Derived Mononuclear Cells From Healthy or Acute Respiratory Distress Syndrome Donors on Recipient Lung-Injured Mice. Critical Care Medicine, 2014, 42, e510-e524.	0.9	24
48	Repeated Administration of Bone Marrow-Derived Cells Prevents Disease Progression in Experimental Silicosis. Cellular Physiology and Biochemistry, 2013, 32, 1681-1694.	1.6	36