
Graham Pw Jewitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5958261/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Streamflow droughts aggravated by human activities despite management. Environmental Research Letters, 2022, 17, 044059.	5.2	24
2	EO-WEF. , 2022, , 33-48.		0
3	Risk Assessment of Water Quantity and Quality Stressors to Balance the Use and Protection of Vulnerable Water Resources. Integrated Environmental Assessment and Management, 2021, 17, 110-130.	2.9	19
4	Understanding gender differences in availability, accessibility and use of climate information among smallholder farmers in Malawi. Climate and Development, 2021, 13, 503-514.	3.9	20
5	Fish telemetry in African inland waters and its use in management: a review. Reviews in Fish Biology and Fisheries, 2021, 31, 337-357.	4.9	8
6	Temporal and spatial ecology of an iconic Labeobarbus spp. in a socio-economically important river. Environmental Biology of Fishes, 2021, 104, 1103-1119.	1.0	3
7	An assessment of the ecological condition of a wetland on the Lions River floodplain based on soil and vegetation parameters, South Africa. African Journal of Aquatic Science, 2021, 46, 67-78.	1.1	0
8	Lake Malawi's threshold behaviour: A stakeholder-informed model to simulate sensitivity to climate change. Journal of Hydrology, 2020, 584, 124671.	5.4	21
9	Long-term trends and variability in the microclimates of the uMngeni Catchment, KwaZulu-Natal, South Africa and potential impacts on water resources. Theoretical and Applied Climatology, 2020, 140, 1171-1184.	2.8	3
10	The southern African inland fish tracking programme (FISHTRAC): An evaluation of the approach for monitoring ecological consequences of multiple water resource stressors, remotely and in real-time. Ecological Indicators, 2020, 111, 106001.	6.3	14
11	Identifying hotspots for investment in ecological infrastructure within the uMngeni catchment, South Africa. Physics and Chemistry of the Earth, 2019, 114, 102807.	2.9	6
12	Degradation of Kilombero Valley Ramsar wetlands in Tanzania. Physics and Chemistry of the Earth, 2019, 112, 216-227.	2.9	31
13	Strategies for coping and adapting to flooding and their determinants: A comparative study of cases from Namibia and Zambia. Physics and Chemistry of the Earth, 2019, 111, 20-34.	2.9	27
14	The water-energy-food nexus in the anthropocene: moving from †nexus thinking' to †nexus action'. Current Opinion in Environmental Sustainability, 2019, 40, 117-123.	6.3	45
15	Hydrograph separation using tracers and digital filters to quantify runoff components in a semiâ€arid mesoscale catchment. Hydrological Processes, 2018, 32, 1334-1350.	2.6	37
16	Rural households' flood preparedness and social determinants in Mwandi district of Zambia and Eastern Zambezi Region of Namibia. International Journal of Disaster Risk Reduction, 2018, 28, 284-297.	3.9	53
17	Effects of land use and land cover changes on water quality in the uMngeni river catchment, South Africa. Physics and Chemistry of the Earth, 2018, 105, 247-264.	2.9	80
18	Improved Process Representation in the Simulation of the Hydrology of a Meso-Scale Semi-Arid Catchment. Water (Switzerland), 2018, 10, 1549.	2.7	5

GRAHAM PW JEWITT

#	Article	IF	CITATIONS
19	Assessing Impacts of Land Use Changes on the Hydrology of a Lowland Rainforest Catchment in Ghana, West Africa. Water (Switzerland), 2018, 10, 9.	2.7	21
20	Modelling potential hydrological returns from investing in ecological infrastructure: Case studies from the Baviaanskloof-Tsitsikamma and uMngeni catchments, South Africa. Ecosystem Services, 2017, 27, 261-271.	5.4	19
21	Multiscale drivers of sugarcane expansion and impacts on water resources in Southern Africa. Environmental Development, 2017, 24, 63-76.	4.1	10
22	Assessing suitability of the ACRU hydrological model in a rainforest catchment in Ghana, West Africa. Water Science, 2017, 31, 198-214.	1.6	7
23	A preliminary investigation of the water use efficiency of sweet sorghum for biofuel in South Africa. Water S A, 2016, 42, 152.	0.4	17
24	Estimating total evaporation at the field scale using the SEBS model and data infilling procedures. Water S A, 2016, 42, 673.	0.4	5
25	An evaluation of how downscaled climate data represents historical precipitation characteristics beyond the means and variances. Global and Planetary Change, 2016, 144, 129-141.	3.5	9
26	A sweet deal? Sugarcane, water and agricultural transformation in Sub-Saharan Africa. Global Environmental Change, 2016, 39, 181-194.	7.8	59
27	Spatial scale impact on daily surface water and sediment fluxes in Thukela river, South Africa. Physics and Chemistry of the Earth, 2016, 92, 34-43.	2.9	5
28	Annual water, sediment, nutrient, and organic carbon fluxes in river basins: A global metaâ€analysis as a function of scale. Water Resources Research, 2015, 51, 8949-8972.	4.2	45
29	Extending periodic eddy covariance latent heat fluxes through tree sap-flow measurements to estimate long-term total evaporation in a peat swamp forest. Hydrology and Earth System Sciences, 2015, 19, 2513-2534.	4.9	8
30	Drivers of spatial and temporal variability of streamflow in the Incomati River basin. Hydrology and Earth System Sciences, 2015, 19, 657-673.	4.9	31
31	Mapping ecosystem services across scales and continents – A review. Ecosystem Services, 2015, 13, 57-63.	5.4	163
32	ANALYSIS OF LAND COVER CHANGES IN THE BONSA CATCHMENT, ANKOBRA BASIN, GHANA. Applied Ecology and Environmental Research, 2015, 13, 935-955.	0.5	17
33	A comparison of productive and non-productive green water-use efficiency of <i>Podocarpus henkelii</i> and <i>Pinus patula</i> in the KwaZulu-Natal Midlands. Southern Forests, 2014, 76, 75-84.	0.7	3
34	Impacts of climate change on water resources in southern Africa: A review. Physics and Chemistry of the Earth, 2014, 67-69, 47-54.	2.9	199
35	Spatial and temporal variations of overland flow during rainfall events and in relation to catchment conditions. Hydrological Processes, 2013, 27, 2325-2338.	2.6	25
36	Key physical characteristics used to assess water harvesting suitability. Physics and Chemistry of the Earth, 2013, 66, 89-100.	2.9	20

GRAHAM PW JEWITT

#	Article	IF	CITATIONS
37	Impacts of global change on southern African water resources systems. Current Opinion in Environmental Sustainability, 2013, 5, 655-666.	6.3	11
38	Improving Crop Yield and Water Productivity by Ecological Sanitation and Water Harvesting in South Africa. Environmental Science & Technology, 2013, 47, 4341-4348.	10.0	11
39	Complexity, Modeling, and Natural Resource Management. Ecology and Society, 2013, 18, .	2.3	60
40	Using Participatory Scenario Planning to Identify Ecosystem Services in Changing Landscapes. Ecology and Society, 2013, 18, .	2.3	50
41	Water-use dynamics of a peat swamp forest and a dune forest in Maputaland, South Africa. Hydrology and Earth System Sciences, 2013, 17, 2053-2067.	4.9	12
42	A rapid assessment method for coupling anthropogenic stressors and wetland ecological condition. Ecological Indicators, 2012, 13, 284-293.	6.3	50
43	Modelling canopy and litter interception in commercial forest plantations in South Africa using the Variable Storage Gash model and idealised drying curves. Hydrology and Earth System Sciences, 2012, 16, 4693-4705.	4.9	29
44	Field data collection and analysis of canopy and litter interception in commercial forest plantations in the KwaZulu-Natal Midlands, South Africa. Hydrology and Earth System Sciences, 2012, 16, 3717-3728.	4.9	58
45	Controls on a scale explicit analysis of sheet erosion. Earth Surface Processes and Landforms, 2012, 37, 847-854.	2.5	15
46	Water erosion-induced CO2 emissions from tilled and no-tilled soils and sediments. Agriculture, Ecosystems and Environment, 2012, 159, 62-69.	5.3	25
47	Hydrological impacts of land use change in three diverse South African catchments. Journal of Hydrology, 2012, 414-415, 118-135.	5.4	89
48	Measurement and modelling of evaporation from a coastal wetland in Maputaland, South Africa. Hydrology and Earth System Sciences, 2012, 16, 3233-3247.	4.9	21
49	Rainfall simulation to identify the storm-scale mechanisms of gully bank retreat. Agricultural Water Management, 2011, 98, 1704-1710.	5.6	38
50	Evaporative water use of different land uses in the upper-Thukela river basin assessed from satellite imagery. Agricultural Water Management, 2011, 98, 1727-1739.	5.6	19
51	Controlling factors of sheet erosion under degraded grasslands in the sloping lands of KwaZulu-Natal, South Africa. Agricultural Water Management, 2011, 98, 1711-1718.	5.6	77
52	Simulating the impact of no-till systems on field water fluxes and maize productivity under semi-arid conditions. Physics and Chemistry of the Earth, 2011, 36, 1004-1011.	2.9	14
53	Predicting plot-scale water infiltration using the correlation between soil apparent electrical resistivity and various soil properties. Physics and Chemistry of the Earth, 2011, 36, 1033-1042.	2.9	7
54	Noâ€īill Impact on Soil and Soil Organic Carbon Erosion under Crop Residue Scarcity in Africa. Soil Science Society of America Journal, 2011, 75, 1503-1512.	2.2	65

GRAHAM PW JEWITT

#	Article	IF	CITATIONS
55	The bioenergy and water nexus. Biofuels, Bioproducts and Biorefining, 2011, 5, 353-360.	3.7	57
56	The impact of biofuel feedstock production on water resources: a developing country perspective. Biofuels, Bioproducts and Biorefining, 2011, 5, 387-398.	3.7	15
57	Confirmation of <i>ACRU</i> model results for applications in land use and climate change studies. Hydrology and Earth System Sciences, 2010, 14, 2399-2414.	4.9	49
58	Spatial mapping of leaf area index using hyperspectral remote sensing for hydrological applications with a particular focus on canopy interception. Hydrology and Earth System Sciences, 2010, 14, 383-392.	4.9	49
59	Establishment of a catchment monitoring network through a participatory approach in a rural community in South Africa. Hydrology and Earth System Sciences, 2010, 14, 2507-2525.	4.9	30
60	Digital mapping of A-horizon thickness using the correlation between various soil properties and soil apparent electrical resistivity. Geoderma, 2010, 157, 154-164.	5.1	28
61	Ecohydrological implications of runoff harvesting in the headwaters of the Thukela River basin, South Africa. Physics and Chemistry of the Earth, 2010, 35, 634-642.	2.9	11
62	Water availability, demand and reliability of in situ water harvesting in smallholder rain-fed agriculture in the Thukela River Basin, South Africa. Hydrology and Earth System Sciences, 2009, 13, 2329-2347.	4.9	28
63	Building an understanding of water use innovation adoption processes through farmer-driven experimentation. Physics and Chemistry of the Earth, 2008, 33, 859-872.	2.9	29
64	The contested future of irrigation in African rural livelihoods – analysis from a water scarce catchment in South Africa. Water Policy, 2008, 10, 173-192.	1.5	15
65	A GIS-based approach for identifying potential runoff harvesting sites in the Thukela River basin, South Africa. Physics and Chemistry of the Earth, 2007, 32, 1058-1067.	2.9	158
66	The influence of tillage on field scale water fluxes and maize yields in semi-arid environments: A case study of Potshini catchment, South Africa. Physics and Chemistry of the Earth, 2007, 32, 1117-1126.	2.9	26
67	Adaptive management and water temperature variability within a South African river system: What are the management options?. Journal of Environmental Management, 2007, 82, 39-50.	7.8	19
68	Preliminary investigation of catchment hydrology in response to agricultural water use innovations: A case study of the Potshini catchment – South Africa. Physics and Chemistry of the Earth, 2006, 31, 976-987.	2.9	35
69	Integrating blue and green water flows for water resources management and planning. Physics and Chemistry of the Earth, 2006, 31, 753-762.	2.9	52
70	Modelling highly variable daily maximum water temperatures in a perennial South African river system. African Journal of Aquatic Science, 2005, 30, 55-63.	1.1	7
71	Intra-annual thermal patterns in the main rivers of the Sabie Catchment, Mpumalanga, South Africa. Water S A, 2004, 30, 445.	0.4	7
72	Channel hydraulics and geomorphic effects of an extreme flood event on the Sabie River, South Africa. Catena, 2004, 58, 151-181.	5.0	44

#	Article	IF	CITATIONS
73	A watershed approach to upgrade rainfed agriculture in water scarce regions through Water System Innovations: an integrated research initiative on water for food and rural livelihoods in balance with ecosystem functions. Physics and Chemistry of the Earth, 2004, 29, 1109-1118.	2.9	104
74	Water resources planning and modelling tools for the assessment of land use change in the Luvuvhu Catchment, South Africa. Physics and Chemistry of the Earth, 2004, 29, 1233-1241.	2.9	42
75	Linking the hydrological cycle and rural livelihoods: a case study in the Luvuvhu catchment, South Africa. Physics and Chemistry of the Earth, 2004, 29, 1209-1217.	2.9	17
76	Application of the Indicators of Hydrological Alteration method to the Mkomazi River, KwaZulu-Natal, South Africa. African Journal of Aquatic Science, 2003, 28, 1-11.	1.1	28
77	A new approach to modelling streamflow reductions resulting from commercial afforestation in South Africa. Southern Forests, 2002, 196, 27-36.	0.1	31
78	Can Integrated Water Resources Management sustain the provision of ecosystem goods and services?. Physics and Chemistry of the Earth, 2002, 27, 887-895.	2.9	93
79	The February 2000 floods on the Sabie River, South Africa: an examination of their magnitude and frequency. Koedoe, 2001, 44, 37.	0.9	29
80	A hydrological perspective of the February 2000 floods : a case study in the Sabie River catchment. Water S A, 2001, 27, 325.	0.4	40
81	Editorial: Special Issue on Water security and the food-water-energy nexus: drivers, responses and feedbacks at local to global scales. Proceedings of the International Association of Hydrological Sciences. 0. 376. 1-1.	1.0	1