List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5957942/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heavy atom oriented orbital angular momentum manipulation in metal-free organic phosphors. Chemical Science, 2022, 13, 789-797.	3.7	18
2	Interplay Between Applied Force and Radical Attack in the Mechanochemical Chain Scission of Poly(acrylic acid). Journal of Physical Chemistry A, 2022, 126, 521-528.	1.1	2
3	Changes in ligand coordination mode induce bimetallic C–C coupling pathways. Dalton Transactions, 2022, 51, 3977-3991.	1.6	2
4	Investigation of Thermally Activated Delayed Fluorescence in Donor–Acceptor Organic Emitters with Time-Resolved Absorption Spectroscopy. Chemistry of Materials, 2022, 34, 2161-2175.	3.2	9
5	The many-body electronic interactions of Fe(II)–porphyrin. Journal of Chemical Physics, 2022, 156, 094110.	1.2	2
6	Glycosyl Exchange of Unactivated Glycosidic Bonds: Suppressing or Embracing Side Reactivity in Catalytic Glycosylations. Journal of Organic Chemistry, 2022, 87, 5817-5826.	1.7	2
7	Predicting reaction conditions from limited data through active transfer learning. Chemical Science, 2022, 13, 6655-6668.	3.7	21
8	Metalâ€Free Organic Triplet Emitters with On–Off Switchable Excited State Intramolecular Proton Transfer. Advanced Functional Materials, 2022, 32, .	7.8	25
9	State-specific solvation for restricted active space spin–flip (RAS-SF) wave functions based on the polarizable continuum formalism. Journal of Chemical Physics, 2022, 156, .	1.2	1
10	Fully variational incremental CASSCF. Journal of Chemical Physics, 2021, 154, 014105.	1.2	8
11	Toward Full Configuration Interaction for Transition-Metal Complexes. Journal of Physical Chemistry A, 2021, 125, 1598-1609.	1.1	10
12	Combined Theoretical and Experimental Investigation of Lewis Acid-Carbonyl Interactions for Metathesis. ACS Catalysis, 2021, 11, 4381-4394.	5.5	6
13	Experimental and Theoretical Characterization of Ultrafast Water-Soluble Photochromic Photoacids. Journal of Physical Chemistry B, 2021, 125, 4120-4131.	1.2	11
14	Impact of Ring-Fusion on the Excited State Decay Pathways of N-Annulated Perylene Diimides. Journal of Physical Chemistry C, 2021, 125, 10500-10515.	1.5	3
15	An Ionâ€Pairing Approach to Stereoselective Metalâ€Free Ringâ€Opening Metathesis Polymerization. Angewandte Chemie, 2021, 133, 14071-14077.	1.6	5
16	Mechanochemical Release of N â€Heterocyclic Carbenes from Flexâ€Activated Mechanophores. Angewandte Chemie, 2021, 133, 13671-13675.	1.6	8
17	The Role of the Core Attachment Positioning in Triggering Intramolecular Singlet Exciton Fission in Perylene Diimide Tetramers. Journal of Physical Chemistry B, 2021, 125, 5114-5131.	1.2	9
18	An Ionâ€Pairing Approach to Stereoselective Metalâ€Free Ringâ€Opening Metathesis Polymerization. Angewandte Chemie - International Edition, 2021, 60, 13952-13958.	7.2	14

#	Article	IF	CITATIONS
19	Mechanochemical Release of <i>N</i> â€Heterocyclic Carbenes from Flexâ€Activated Mechanophores. Angewandte Chemie - International Edition, 2021, 60, 13559-13563.	7.2	36
20	Giving superabsorbent polymers a second life as pressure-sensitive adhesives. Nature Communications, 2021, 12, 4524.	5.8	32
21	Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. Journal of Chemical Physics, 2021, 155, 084801.	1.2	518
22	Using <i>J</i> _{PP} to Identify Ni Bidentate Phosphine Complexes <i>In Situ</i> . Inorganic Chemistry, 2021, 60, 13400-13408.	1.9	1
23	An Openâ€Shell Coronoid with Hybrid Chichibabin–Schlenk Conjugation. Angewandte Chemie - International Edition, 2021, 60, 22496-22504.	7.2	15
24	An Openâ€ 5 hell Coronoid with Hybrid Chichibabin–Schlenk Conjugation. Angewandte Chemie, 2021, 133, 22670-22678.	1.6	3
25	BrÃnsted-Acid-Catalyzed Intramolecular Carbonyl–Olefin Reactions: Interrupted Metathesis vs Carbonyl-Ene Reaction. Journal of Organic Chemistry, 2021, 86, 3008-3016.	1.7	12
26	Using Adhesives to Capture Microplastics from Water. ACS ES&T Engineering, 2021, 1, 1698-1704.	3.7	11
27	Increasing the CO ₂ Reduction Activity of Cobalt Phthalocyanine by Modulating the If-Donor Strength of Axially Coordinating Ligands. ACS Catalysis, 2021, 11, 13203-13216.	5.5	33
28	Studies of Catalyst-Controlled Regioselective Acetalization and Its Application to Single-Pot Synthesis of Differentially Protected Saccharides. Journal of the American Chemical Society, 2021, 143, 18592-18604.	6.6	8
29	A Comparison of Exact and Model Exchange–Correlation Potentials for Molecules. Journal of Physical Chemistry Letters, 2021, 12, 12012-12019.	2.1	13
30	Experimental and Computational Studies on Regiodivergent Chiral Phosphoric Acid Catalyzed Cycloisomerization of Mupirocin Methyl Ester. Chemistry - A European Journal, 2020, 26, 4583-4591.	1.7	5
31	The Mechanics of the Bicycle Pedal Photoisomerization in Crystalline <i>cis,cis</i> -1,4-Diphenyl-1,3-butadiene. Journal of Physical Chemistry A, 2020, 124, 8897-8906.	1.1	6
32	Mechanistic Study of Isotactic Poly(propylene oxide) Synthesis using a Tethered Bimetallic Chromium Salen Catalyst. ACS Catalysis, 2020, 10, 8960-8967.	5.5	13
33	Activating intramolecular singlet exciton fission by altering π-bridge flexibility in perylene diimide trimers for organic solar cells. Chemical Science, 2020, 11, 8757-8770.	3.7	22
34	Charge transfer via spin flip configuration interaction: Benchmarks and application to singlet fission. Journal of Chemical Physics, 2020, 153, 064109.	1.2	10
35	Calculation of spin–orbit couplings using RASCI spinless one-particle density matrices: Theory and applications. Journal of Chemical Physics, 2020, 153, 214107.	1.2	18
36	Revealing the Strong Relationships between Ligand Conformers and Activation Barriers: A Case Study of Bisphosphine Reductive Elimination. ACS Catalysis, 2020, 10, 7136-7145.	5.5	25

PAUL M ZIMMERMAN

#	Article	IF	CITATIONS
37	Fluoride Migration Catalysis Enables Simple, Stereoselective, and Iterative Glycosylation. Journal of the American Chemical Society, 2020, 142, 7235-7242.	6.6	43
38	What Does the Machine Learn? Knowledge Representations of Chemical Reactivity. Journal of Chemical Information and Modeling, 2020, 60, 1290-1301.	2.5	19
39	Quantum Chemical Investigation of Dimerization in the Schlenk Equilibrium of Thiophene Grignard Reagents. Journal of Physical Chemistry A, 2020, 124, 1480-1488.	1.1	7
40	Nickel-Catalyzed Three-Component Cycloadditions of Enoates, Alkynes, and Aldehydes. Journal of Organic Chemistry, 2020, 85, 2956-2965.	1.7	9
41	Mercury Magnetic Isotope Effect: A Plausible Photochemical Mechanism. Journal of Physical Chemistry A, 2020, 124, 3711-3719.	1.1	9
42	New Direct Approach for Determining the Reverse Intersystem Crossing Rate in Organic Thermally Activated Delayed Fluorescent (TADF) Emitters. Journal of the American Chemical Society, 2020, 142, 8074-8079.	6.6	52
43	Learning To Predict Reaction Conditions: Relationships between Solvent, Molecular Structure, and Catalyst. Journal of Chemical Information and Modeling, 2019, 59, 3645-3654.	2.5	36
44	Evaluation of full valence correlation energies and gradients. Journal of Chemical Physics, 2019, 150, 244117.	1.2	26
45	Functionalized and Degradable Polyphthalaldehyde Derivatives. Journal of the American Chemical Society, 2019, 141, 14544-14548.	6.6	37
46	Hydroxyl Radical-Coupled Electron-Transfer Mechanism of Flavin-Dependent Hydroxylases. Journal of Physical Chemistry B, 2019, 123, 8065-8073.	1.2	12
47	Exact exchange-correlation potentials from ground-state electron densities. Nature Communications, 2019, 10, 4497.	5.8	54
48	Toward oneâ€pot olefin/thiophene block copolymers using an in situ ligand exchange. Journal of Polymer Science Part A, 2019, 57, 1601-1605.	2.5	2
49	5,10-Dimesityldiindeno[1,2- <i>a</i> :2′,1′- <i>i</i>]phenanthrene: a stable biradicaloid derived from Chichibabin's hydrocarbon. Chemical Science, 2019, 10, 3413-3420.	3.7	33
50	Using ultra-fast spectroscopy to probe the excited state dynamics of a reported highly efficient thermally activated delayed fluorescence chromophore. Journal of Materials Chemistry C, 2019, 7, 4210-4221.	2.7	16
51	Chemoenzymatic <i>o</i> -Quinone Methide Formation. Journal of the American Chemical Society, 2019, 141, 20269-20277.	6.6	38
52	Catalytic Carbonyl-Olefin Metathesis of Aliphatic Ketones: Iron(III) Homo-Dimers as Lewis Acidic Superelectrophiles. Journal of the American Chemical Society, 2019, 141, 1690-1700.	6.6	63
53	Examining the Ways To Bend and Break Reaction Pathways Using Mechanochemistry. Journal of Physical Chemistry C, 2018, 122, 6996-7004.	1.5	20
54	Excited States of Methylene, Polyenes, and Ozone from Heat-Bath Configuration Interaction. Journal of Physical Chemistry A, 2018, 122, 2714-2722.	1.1	80

#	Article	IF	CITATIONS
55	Uncovering reaction sequences on surfaces through graphical methods. Physical Chemistry Chemical Physics, 2018, 20, 7721-7729.	1.3	10
56	Spin-Switching Transmetalation at Ni Diimine Catalysts. ACS Catalysis, 2018, 8, 3655-3666.	5.5	20
57	Trials and tribulations of designing multitasking catalysts for olefin/thiophene block copolymerizations. Journal of Polymer Science Part A, 2018, 56, 132-137.	2.5	10
58	Iterative submatrix diagonalisation for large configuration interaction problems. Molecular Physics, 2018, 116, 107-117.	0.8	3
59	Methods for exploring reaction space in molecular systems. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8, e1354.	6.2	164
60	Discovery of conical intersection mediated photochemistry with growing string methods. Physical Chemistry Chemical Physics, 2018, 20, 27394-27405.	1.3	24
61	Coupled double triplet state in singlet fission. Physical Chemistry Chemical Physics, 2018, 20, 30083-30094.	1.3	80
62	Interrupted carbonyl-olefin metathesis via oxygen atom transfer. Science, 2018, 361, 1363-1369.	6.0	47
63	Stepwise basis set selection. Journal of Computational Chemistry, 2018, 39, 2153-2162.	1.5	1
64	Fully Conjugated [4]Chrysaorene. Redox-Coupled Anion Binding in a Tetraradicaloid Macrocycle. Journal of the American Chemical Society, 2018, 140, 14474-14480.	6.6	35
65	Investigating the Optical Properties of Thiophene Additions to <i>s</i> -Indacene Donors with Diketopyrrolopyrrole, Isoindigo, and Thienothiophene Acceptors. Journal of Physical Chemistry C, 2018, 122, 27713-27733.	1.5	11
66	Predicting and Controlling Entangled Two-Photon Absorption in Diatomic Molecules. Journal of Physical Chemistry A, 2018, 122, 8198-8212.	1.1	25
67	Ligand-Induced Reductive Elimination of Ethane from Azopyridine Palladium Dimethyl Complexes. Journal of the American Chemical Society, 2018, 140, 11408-11415.	6.6	15
68	Virtual Screening of Hole Transport, Electron Transport, and Host Layers for Effective OLED Design. Journal of Chemical Information and Modeling, 2018, 58, 2440-2449.	2.5	22
69	Heteroatom and Side Chain Effects on the Optical and Photophysical Properties: Ultrafast and Nonlinear Spectroscopy of New Naphtho[1,2- <i>b</i> :5,6- <i>b</i> â€2]difuran Donor Polymers. Journal of Physical Chemistry C, 2018, 122, 17049-17066.	1.5	20
70	Enacting Two-Electron Transfer from a Double-Triplet State of Intramolecular Singlet Fission. Journal of the American Chemical Society, 2018, 140, 7760-7763.	6.6	46
71	Charge Transfer and Aggregation Effects on the Performance of Planar vs Twisted Nonfullerene Acceptor Isomers for Organic Solar Cells. Chemistry of Materials, 2018, 30, 4263-4276.	3.2	49
72	Reliable and efficient reaction path and transition state finding for surface reactions with the growing string method. Journal of Computational Chemistry, 2017, 38, 645-658.	1.5	40

#	Article	IF	CITATIONS
73	Recovering dynamic correlation in spin flip configuration interaction through a difference dedicated approach. Journal of Chemical Physics, 2017, 146, 014103.	1.2	38
74	Incremental full configuration interaction. Journal of Chemical Physics, 2017, 146, 104102.	1.2	86
75	Evaluating the Effect of Heteroatoms on the Photophysical Properties of Donor–Acceptor Conjugated Polymers Based on 2,6-Di(thiophen-2-yl)benzo[1,2-b:4,5-b′]difuran: Two-Photon Cross-Section and Ultrafast Time-Resolved Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 14382-14392.	1.5	27
76	Regiodivergent Glycosylations of 6-Deoxy-erythronolide B and Oleandomycin-Derived Macrolactones Enabled by Chiral Acid Catalysis. Journal of the American Chemical Society, 2017, 139, 8570-8578.	6.6	63
77	Singlet–Triplet Gaps through Incremental Full Configuration Interaction. Journal of Physical Chemistry A, 2017, 121, 4712-4720.	1.1	42
78	Finding reaction mechanisms, intuitive or otherwise. Organic and Biomolecular Chemistry, 2017, 15, 501-504.	1.5	65
79	Entrances, Traps, and Rate-Controlling Factors for Nickel-Catalyzed C–H Functionalization. ACS Catalysis, 2017, 7, 7352-7362.	5.5	48
80	Simulated Mechanism for Palladium-Catalyzed, Directed Î ³ -Arylation of Piperidine. ACS Catalysis, 2017, 7, 5466-5477.	5.5	33
81	Mechanistic Investigations of the Iron(III)-Catalyzed Carbonyl-Olefin Metathesis Reaction. Journal of the American Chemical Society, 2017, 139, 10832-10842.	6.6	77
82	Strong correlation in incremental full configuration interaction. Journal of Chemical Physics, 2017, 146, 224104.	1.2	46
83	Mechanistic Insight into Thiophene Catalyst-Transfer Polymerization Mediated by Nickel Diimine Catalysts. Macromolecules, 2017, 50, 9121-9127.	2.2	20
84	Density Functional Physicality in Electronic Coupling Estimation: Benchmarks and Error Analysis. Journal of Physical Chemistry Letters, 2017, 8, 3242-3248.	2.1	14
85	Isospecific, Chain Shuttling Polymerization of Propylene Oxide Using a Bimetallic Chromium Catalyst: A New Route to Semicrystalline Polyols. Journal of the American Chemical Society, 2017, 139, 11048-11054.	6.6	63
86	Exploring the relationship between vibrational mode locality and coupling using constrained optimization. Journal of Chemical Physics, 2016, 144, 124111.	1.2	29
87	Impact of Preferential π-Binding in Catalyst-Transfer Polycondensation of Thiazole Derivatives. ACS Macro Letters, 2016, 5, 1411-1415.	2.3	33
88	Experimental and Computational Assessment of Reactivity and Mechanism in C(sp ³)–N Bond-Forming Reductive Elimination from Palladium(IV). Journal of the American Chemical Society, 2016, 138, 6049-6060.	6.6	79
89	An Unusual Iron-Dependent Oxidative Deformylation Reaction Providing Insight into Hydrocarbon Biosynthesis in Nature. ACS Catalysis, 2016, 6, 3293-3300.	5.5	13
90	Iron(III)-catalysed carbonyl–olefin metathesis. Nature, 2016, 533, 374-379.	13.7	179

PAUL M ZIMMERMAN

#	Article	IF	CITATIONS
91	Computational Mechanism for Initiation and Growth of Poly(3-hexylthiophene) Using Palladium <i>N</i> -Heterocyclic Carbene Precatalysts. Macromolecules, 2016, 49, 7632-7641.	2.2	21
92	Estimating the Derivative Coupling Vector Using Gradients. Journal of Physical Chemistry Letters, 2016, 7, 5074-5079.	2.1	10
93	Achieving Accurate Reduction Potential Predictions for Anthraquinones in Water and Aprotic Solvents: Effects of Inter- and Intramolecular H-Bonding and Ion Pairing. Journal of Physical Chemistry C, 2016, 120, 22235-22247.	1.5	41
94	The Mechanism of Acceptorless Amine Double Dehydrogenation by <i>N,N,N</i> -Amide Ruthenium(II) Hydrides: A Combined Experimental and Computational Study. ACS Catalysis, 2016, 6, 4799-4813.	5.5	56
95	Studies of the Mechanism and Origins of Enantioselectivity for the Chiral Phosphoric Acid-Catalyzed Stereoselective Spiroketalization Reactions. Journal of the American Chemical Society, 2016, 138, 444-456.	6.6	89
96	Mechanism for Forming B,C,N,O Rings from NH ₃ BH ₃ and CO ₂ via Reaction Discovery Computations. Journal of Physical Chemistry A, 2016, 120, 1135-1144.	1.1	15
97	Optimizing Vibrational Coordinates To Modulate Intermode Coupling. Journal of Chemical Theory and Computation, 2016, 12, 1883-1891.	2.3	29
98	Structure and Dynamics of the ¹ (TT) State in a Quinoidal Bithiophene: Characterizing a Promising Intramolecular Singlet Fission Candidate. Journal of Physical Chemistry C, 2015, 119, 28258-28268.	1.5	56
99	Orbitals with intermediate localization and low coupling: Spanning the gap between canonical and localized orbitals. Journal of Chemical Physics, 2015, 143, 014106.	1.2	8
100	Highly Active Nickel Catalysts for C–H Functionalization Identified through Analysis of Off-Cycle Intermediates. Journal of the American Chemical Society, 2015, 137, 7636-7639.	6.6	71
101	Hexane Cracking on ZSM-5 and Faujasite Zeolites: a QM/MM/QCT Study. Journal of Physical Chemistry C, 2015, 119, 28836-28853.	1.5	31
102	Singleâ€ended transition state finding with the growing string method. Journal of Computational Chemistry, 2015, 36, 601-611.	1.5	160
103	Navigating molecular space for reaction mechanisms: an efficient, automated procedure. Molecular Simulation, 2015, 41, 43-54.	0.9	82
104	Unraveling the Crucial Role of Metal-Free Catalysis in Borazine and Polyborazylene Formation in Transition-Metal-Catalyzed Ammonia–Borane Dehydrogenation. ACS Catalysis, 2015, 5, 3478-3493.	5.5	47
105	Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Molecular Physics, 2015, 113, 184-215.	0.8	2,561
106	Enantioselective Synthesis of Piperidines through the Formation of Chiral Mixed Phosphoric Acid Acetals: Experimental and Theoretical Studies. Angewandte Chemie - International Edition, 2014, 53, 11194-11198.	7.2	59
107	Restricted active space spin-flip (RAS-SF) with arbitrary number of spin-flips. Physical Chemistry Chemical Physics, 2013, 15, 358-366.	1.3	64
108	A Correlated Electron View of Singlet Fission. Accounts of Chemical Research, 2013, 46, 1339-1347.	7.6	150

PAUL M ZIMMERMAN

#	Article	IF	CITATIONS
109	Automated discovery of chemically reasonable elementary reaction steps. Journal of Computational Chemistry, 2013, 34, 1385-1392.	1.5	179
110	Reliable Transition State Searches Integrated with the Growing String Method. Journal of Chemical Theory and Computation, 2013, 9, 3043-3050.	2.3	177
111	Growing string method with interpolation and optimization in internal coordinates: Method and examples. Journal of Chemical Physics, 2013, 138, 184102.	1.2	145
112	Restricted active space spin-flip configuration interaction: Theory and examples for multiple spin flips with odd numbers of electrons. Journal of Chemical Physics, 2012, 137, 164110.	1.2	69
113	Efficient exploration of reaction paths via a freezing string method. Journal of Chemical Physics, 2011, 135, 224108.	1.2	154
114	Selection and Validation of Charge and Lennard-Jones Parameters for QM/MM Simulations of Hydrocarbon Interactions with Zeolites. Journal of Chemical Theory and Computation, 2011, 7, 1695-1703.	2.3	67
115	Mechanism for Singlet Fission in Pentacene and Tetracene: From Single Exciton to Two Triplets. Journal of the American Chemical Society, 2011, 133, 19944-19952.	6.6	397
116	On the nature of electron correlation in C60. Journal of Chemical Physics, 2011, 135, 194306.	1.2	26
117	Singlet fission in pentacene through multi-exciton quantum states. Nature Chemistry, 2010, 2, 648-652.	6.6	356
118	Simultaneous Two-Hydrogen Transfer as a Mechanism for Efficient CO ₂ Reduction. Inorganic Chemistry, 2010, 49, 8724-8728.	1.9	70
119	Excited states of methylene from quantum Monte Carlo. Journal of Chemical Physics, 2009, 131, 124103.	1.2	70
120	The Role of Free Nâ€Heterocyclic Carbene (NHC) in the Catalytic Dehydrogenation of Ammonia–Borane in the Nickel NHC System. Angewandte Chemie - International Edition, 2009, 48, 2201-2205.	7.2	115
121	Oligomerization and Autocatalysis of NH2BH2 with Ammoniaâ^'Borane. Inorganic Chemistry, 2009, 48, 1069-1081.	1.9	108
122	Catalytic Dehydrogenation of Ammonia Borane at Ni Monocarbene and Dicarbene Catalysts. Inorganic Chemistry, 2009, 48, 5418-5433.	1.9	72