
Kazu Kobayakawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5957908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Significance of the neurological level of injury as a prognostic predictor for motor complete cervical spinal cord injury patients. Journal of Spinal Cord Medicine, 2023, 46, 494-500.	1.4	1
2	How much time is necessary to confirm the diagnosis of permanent complete cervical spinal cord injury?. Spinal Cord, 2020, 58, 284-289.	1.9	7
3	Macrophage centripetal migration drives spontaneous healing process after spinal cord injury. Science Advances, 2019, 5, eaav5086.	10.3	60
4	The acute phase serum zinc concentration is a reliable biomarker for predicting the functional outcome after spinal cord injury. EBioMedicine, 2019, 41, 659-669.	6.1	29
5	Locomotor Training Increases Synaptic Structure With High NGL-2 Expression After Spinal Cord Hemisection. Neurorehabilitation and Neural Repair, 2019, 33, 225-231.	2.9	7
6	Pathological changes of distal motor neurons after complete spinal cord injury. Molecular Brain, 2019, 12, 4.	2.6	34
7	Astrocyte reactivity and astrogliosis after spinal cord injury. Neuroscience Research, 2018, 126, 39-43.	1.9	228
8	Periostin Promotes Fibroblast Migration and Inhibits Muscle Repair After Skeletal Muscle Injury. Journal of Bone and Joint Surgery - Series A, 2018, 100, e108.	3.0	20
9	Periostin Promotes Scar Formation through the Interaction between Pericytes and Infiltrating Monocytes/Macrophages after Spinal Cord Injury. American Journal of Pathology, 2017, 187, 639-653.	3.8	61
10	Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin–N-cadherin pathway after spinal cord injury. Nature Medicine, 2017, 23, 818-828.	30.7	355
11	Macrophage Infiltration Is a Causative Factor for Ligamentum Flavum Hypertrophy through the Activation of Collagen Production in Fibroblasts. American Journal of Pathology, 2017, 187, 2831-2840.	3.8	21
12	Experimental Mouse Model of Lumbar Ligamentum Flavum Hypertrophy. PLoS ONE, 2017, 12, e0169717.	2.5	25
13	The feasibility of in vivo imaging of infiltrating blood cells for predicting the functional prognosis after spinal cord injury. Scientific Reports, 2016, 6, 25673.	3.3	10
14	The establishment of the first nonsurgical experimental model of progressive scoliosis -The biomechanical mechanism involved in the etiology of the thoracic scoliosis Scoliosis, 2015, 10, .	0.4	0
15	Engrafted Neural Stem/Progenitor Cells Promote Functional Recovery through Synapse Reorganization with Spared Host Neurons after Spinal Cord Injury. Stem Cell Reports, 2015, 5, 264-277.	4.8	48
16	Acute hyperglycemia impairs functional improvement after spinal cord injury in mice and humans. Science Translational Medicine, 2014, 6, 256ra137.	12.4	68
17	Ly6C ⁺ Ly6G ^{â^'} Myeloidâ€derived suppressor cells play a critical role in the resolution of acute inflammation and the subsequent tissue repair process after spinal cord injury. Journal of Neurochemistry, 2013, 125, 74-88.	3.9	90
18	Disturbance of Rib Cage Development Causes Progressive Thoracic Scoliosis. Journal of Bone and Joint Surgery - Series A, 2013, 95, e130.	3.0	15

Каги Ковачакаwа

#	Article	IF	CITATIONS
19	Therapeutic Activities of Engrafted Neural Stem/Precursor Cells Are Not Dormant in the Chronically Injured Spinal Cord. Stem Cells, 2013, 31, 1535-1547.	3.2	57
20	Neurological Recovery Is Impaired by Concurrent but Not by Asymptomatic Pre-existing Spinal Cord Compression After Traumatic Spinal Cord Injury. Spine, 2012, 37, 1448-1455.	2.0	20
21	Liposomal clodronate selectively eliminates microglia from primary astrocyte cultures. Journal of Neuroinflammation, 2012, 9, 116.	7.2	49
22	Direct isolation and RNA-seq reveal environment-dependent properties of engrafted neural stem/progenitor cells. Nature Communications, 2012, 3, 1140.	12.8	65
23	Right thoracic curvature in the normal spine. Journal of Orthopaedic Surgery and Research, 2011, 6, 4.	2.3	9