Sergey Kochetkov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5957734/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative analysis of the white rot fungus <i>Trametes hirsuta</i> 072 laccases ability to modify 17β-oestradiol in the aqueous medium. Biocatalysis and Biotransformation, 2023, 41, 475-485.	2.0	Ο
2	3′-Amino modifications enhance the antifungal properties of <i>N</i> ⁴ -alkyl-5-methylcytidines for potential biocides. New Journal of Chemistry, 2022, 46, 5614-5626.	2.8	6
3	Cultivation of Cells in a Physiological Plasmax Medium Increases Mitochondrial Respiratory Capacity and Reduces Replication Levels of RNA Viruses. Antioxidants, 2022, 11, 97.	5.1	20
4	Role of Polyamine-Induced Dimerization of Antizyme in Its Cellular Functions. International Journal of Molecular Sciences, 2022, 23, 4614.	4.1	4
5	New Analogues of Uridine as Possible Anti-Viral Agents Specific to SARS-CoV-2. Molecular Biology, 2022, 56, 469-473.	1.3	0
6	Analogues of Pyrimidine Nucleosides as Mycobacteria Growth Inhibitors. Microorganisms, 2022, 10, 1299.	3.6	8
7	Glycol and Phosphate Depot Forms of 4- and/or 5-Modified Nucleosides Exhibiting Antibacterial Activity. Molecular Biology, 2021, 55, 143-153.	1.3	4
8	Discovery of novel N4-alkylcytidines as promising antimicrobial agents. European Journal of Medicinal Chemistry, 2021, 215, 113212.	5.5	7
9	Pre-Senescence Induction in Hepatoma Cells Favors Hepatitis C Virus Replication and Can Be Used in Exploring Antiviral Potential of Histone Deacetylase Inhibitors. International Journal of Molecular Sciences, 2021, 22, 4559.	4.1	4
10	Dual-targeted anti-CMV/anti-HIV-1 heterodimers. Biochimie, 2021, 189, 169-180.	2.6	0
11	Evaluation of the Antiviral Potential of Modified Heterocyclic Base and 5'-Norcarbocyclic Nucleoside Analogs Against SARS-CoV-2. , 2021, 13, 78-81.		4
12	Selective Inhibition of HDAC Class I Sensitizes Leukemia and Neuroblastoma Cells to Anticancer Drugs. Biomedicines, 2021, 9, 1846.	3.2	9
13	Uracil-Containing Heterodimers of a New Type: Synthesis and Study of Their Anti-Viral Properties. Molecules, 2020, 25, 3350.	3.8	5
14	5-Alkylthiomethyl Derivatives of 2'-Deoxyuridine: Synthesis and Antibacterial Activity. Russian Journal of Bioorganic Chemistry, 2020, 46, 133-138.	1.0	1
15	Interaction of 5-substituted pyrimidine nucleoside analogues and M.Tuberculosis: A view through an electron microscope. Biochimie, 2020, 171-172, 170-177.	2.6	10
16	Hydroxylamine Analogue of Agmatine: Magic Bullet for Arginine Decarboxylase. Biomolecules, 2020, 10, 406.	4.0	18
17	Synthesis of water-soluble prodrugs of 5-modified 2ʹ-deoxyuridines and their antibacterial activity. Journal of Antibiotics, 2020, 73, 236-246.	2.0	14
18	Synthesis of (3R,10R)- and (3S,10S)-Diastereomers of 3,10-Dimethylspermine. Russian Journal of Bioorganic Chemistry, 2020, 46, 1061-1066.	1.0	1

#	Article	IF	CITATIONS
19	Identification of a Novel Substrate-Derived Spermine Oxidase Inhibitor. Acta Naturae, 2020, 12, 140-144.	1.7	2
20	Hepatitis C Virus RNA-Dependent RNA Polymerase Is Regulated by Cysteine S-Glutathionylation. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-11.	4.0	7
21	Investigation of 5'-Norcarbocyclic Nucleoside Analogues as Antiprotozoal and Antibacterial Agents. Molecules, 2019, 24, 3433.	3.8	12
22	Structural isomers of cinnamic hydroxamic acids block HCV replication via different mechanisms. European Journal of Medicinal Chemistry, 2019, 183, 111723.	5.5	7
23	Synthesis of N′-propylhydrazide analogs of hydroxamic inhibitors of histone deacetylases (HDACs) and evaluation of their impact on activities of HDACs and replication of hepatitis C virus (HCV). Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2369-2374.	2.2	12
24	The Immunogenicity in Mice of HCV Core Delivered as DNA Is Modulated by Its Capacity to Induce Oxidative Stress and Oxidative Stress Response. Cells, 2019, 8, 208.	4.1	4
25	Novel 5-substituted derivatives of 2'-deoxy-6-azauridine with antibacterial activity. Journal of Antibiotics, 2019, 72, 535-544.	2.0	9
26	C-Methylated Analogs of Spermine and Spermidine: Synthesis and Biological Activity. Russian Journal of Bioorganic Chemistry, 2019, 45, 463-487.	1.0	6
27	Hydrazo coupling: the efficient transition-metal-free C–H functionalization of 8-hydroxyquinoline and phenol through base catalysis. Green Chemistry, 2019, 21, 6381-6389.	9.0	9
28	Unforeseen Possibilities To Investigate the Regulation of Polyamine Metabolism Revealed by Novel C-Methylated Spermine Derivatives. Journal of Medicinal Chemistry, 2019, 62, 11335-11347.	6.4	10
29	Synthesis of (R)- and (S)-isomers of 2-methylspermidine. Mendeleev Communications, 2019, 29, 678-679.	1.6	0
30	HIV-1 Reverse Transcriptase Promotes Tumor Growth and Metastasis Formation via ROS-Dependent Upregulation of Twist. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-28.	4.0	21
31	Inhibitor of polyamine catabolism MDL72.527 restores the sensitivity to doxorubicin of monocytic leukemia Thp-1 cells infected with human cytomegalovirus. Biochimie, 2019, 158, 82-89.	2.6	6
32	Selective Inhibition of <i>Enterovirus A</i> Species Members' Reproduction by Furano[2, 3â€ <i>d</i>]pyrimidine Nucleosides Revealed by Antiviral Activity Profiling against (+)ssRNA Viruses. ChemistrySelect, 2018, 3, 2321-2325.	1.5	21
33	Novel 5′-Norcarbocyclic Derivatives of Bicyclic Pyrrolo- and Furano[2,3-d]Pyrimidine Nucleosides. Molecules, 2018, 23, 2654.	3.8	6
34	Acetylated derivatives of C-methylated analogues of spermidine: synthesis and interaction with N1-acetylpolyamine oxidase. Mendeleev Communications, 2018, 28, 479-481.	1.6	5
35	Novel 5′-Norcarbocyclic Pyrimidine Derivatives as Antibacterial Agents. Molecules, 2018, 23, 3069.	3.8	19
36	Activation of Polyamine Catabolism by N1,N11-Diethylnorspermine in Hepatic HepaRG Cells Induces Dedifferentiation and Mesenchymal-Like Phenotype. Cells, 2018, 7, 275.	4.1	13

#	Article	IF	CITATIONS
37	Synthesis of Pyridyl-4-Oxy-Substituted N-Hydroxy Amides of Cinnamic Acid as New Inhibitors of Histone Deacetylase Activity and Hepatitis C Virus Replication. Russian Journal of Bioorganic Chemistry, 2018, 44, 453-460.	1.0	3
38	Redox Biology of Respiratory Viral Infections. Viruses, 2018, 10, 392.	3.3	290
39	Polyamine Metabolism and Oxidative Protein Folding in the ER as ROS-Producing Systems Neglected in Virology. International Journal of Molecular Sciences, 2018, 19, 1219.	4.1	26
40	Hepatitis C virus alters metabolism of biogenic polyamines by affecting expression of key enzymes of their metabolism. Biochemical and Biophysical Research Communications, 2017, 483, 904-909.	2.1	24
41	New benzophenone phosphonate derivatives. Mendeleev Communications, 2017, 27, 346-348.	1.6	2
42	Low-molecular-weight regulators of biogenic polyamine metabolism affect cytokine production and expression of hepatitis Đį virus proteins in Huh7.5 human hepatocarcinoma cells. Molecular Biology, 2017, 51, 453-464.	1.3	3
43	On the Reaction of Carbonyl Diphosphonic Acid with Hydroxylamine and O-alkylhydroxylamines: Unexpected Degradation of P-C-P Bridge. Molecules, 2017, 22, 1040.	3.8	0
44	Modulation of Cell Death Pathways by Hepatitis C Virus Proteins in Huh7.5 Hepatoma Cells. International Journal of Molecular Sciences, 2017, 18, 2346.	4.1	11
45	Oxidative stress, a trigger of hepatitis C and B virus-induced liver carcinogenesis. Oncotarget, 2017, 8, 3895-3932.	1.8	126
46	Hepatitis C Virus NS5A Protein Triggers Oxidative Stress by Inducing NADPH Oxidases 1 and 4 and Cytochrome P450 2E1. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-10.	4.0	46
47	Oxidative Stress during HIV Infection: Mechanisms and Consequences. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-18.	4.0	248
48	Prokaryotic Expression, Purification and Immunogenicity in Rabbits of the Small Antigen of Hepatitis Delta Virus. International Journal of Molecular Sciences, 2016, 17, 1721.	4.1	2
49	Convenient syntheses of phosphinic analogues of Î ³ -aminobutyric- and glutamic acids. Russian Journal of Bioorganic Chemistry, 2016, 42, 672-676.	1.0	2
50	Novel hydroxylamine-containing analogues of 1-guanidino-7-aminoheptane (GC7), an effective inhibitor of deoxyhypusine synthase. Russian Journal of Bioorganic Chemistry, 2016, 42, 415-422.	1.0	0
51	5-(4-alkyl-1,2,3-triazol-1-yl)methyl derivatives of 2′-deoxyuridine as inhibitors of viral and bacterial growth. Russian Journal of Bioorganic Chemistry, 2016, 42, 677-684.	1.0	17
52	1,6-Bis[(benzyloxy)methyl]uracil derivatives—Novel antivirals with activity against HIV-1 and influenza H1N1 virus. Bioorganic and Medicinal Chemistry, 2016, 24, 2476-2485.	3.0	8
53	Methylene bisphosphonates as the inhibitors of HIV RT phosphorolytic activity. Biochimie, 2016, 127, 153-162.	2.6	5
54	Synthesis of (Z)-N-hydroxy-3-methoxy-3-phenylacrylamide as new selective inhibitor of hepatitis C virus replication. Russian Journal of Bioorganic Chemistry, 2016, 42, 191-197.	1.0	3

#	Article	IF	CITATIONS
55	Hepatitis C virus: The role of N-glycosylation sites of viral genotype 1b proteins for formation of viral particles in insect and mammalian cells. Biochemistry and Biophysics Reports, 2016, 7, 98-105.	1.3	3
56	Aminooxy adsorbents derived from sephareose and toyopearl. Russian Journal of Bioorganic Chemistry, 2016, 42, 546-550.	1.0	0
57	Synthesis of 2,11-bis(methylidene)spermine, a new inhibitor of spermine oxidase. Russian Journal of Bioorganic Chemistry, 2016, 42, 423-427.	1.0	4
58	Data on synthesis of methylene bisphosphonates and screening of their inhibitory activity towards HIV reverse transcriptase. Data in Brief, 2016, 8, 1157-1167.	1.0	2
59	Hydrophobic-core PEGylated graft copolymer-stabilized nanoparticles composed of insoluble non-nucleoside reverse transcriptase inhibitors exhibit strong anti-HIV activity. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2405-2413.	3.3	7
60	Effect of Hepatitis C virus proteins on the production of proinflammatory and profibrotic cytokines in Huh7.5 human hepatoma cells. Molecular Biology, 2016, 50, 422-430.	1.3	4
61	Analysis of the Domains of Hepatitis C Virus Core and NS5A Proteins that Activate the Nrf2/ARE Cascade. Acta Naturae, 2016, 8, 123-127.	1.7	11
62	Study of Antiherpetic Efficiency of Phosphite of Acycloguanosine Ableto Over come the Barrier of Resistance to Acyclovir. Acta Naturae, 2016, 8, 74-81.	1.7	1
63	Analysis of the Domains of Hepatitis C Virus Core and NS5A Proteins that Activate the Nrf2/ARE Cascade. Acta Naturae, 2016, 8, 123-127.	1.7	7
64	Therapy of HIV Infection: Current Approaches and Prospects. Acta Naturae, 2016, 8, 23-32.	1.7	11
65	HCV Core Protein Uses Multiple Mechanisms to Induce Oxidative Stress in Human Hepatoma Huh7 Cells. Viruses, 2015, 7, 2745-2770.	3.3	71
66	Scaffold hopping: Exploration of acetanilide-containing uracil analogues as potential NNRTIs. Bioorganic and Medicinal Chemistry, 2015, 23, 1069-1081.	3.0	14
67	Enantiomers of 3-Methylspermidine Selectively Modulate Deoxyhypusine Synthesis and Reveal Important Determinants for Spermidine Transport. ACS Chemical Biology, 2015, 10, 1417-1424.	3.4	12
68	Chemistry and biomedicine: diversity and unity of goals. Russian Chemical Reviews, 2015, 84, E01-E01.	6.5	1
69	Pyridine hydroxamic acids are specific anti-HCV agents affecting HDAC6. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2382-2385.	2.2	15
70	5′-Norcarbocyclic analogues of furano[2,3-d]pyrimidine nucleosides. Heterocyclic Communications, 2015, 21, 259-262.	1.2	7
71	Synthesis and antimicrobial properties of 5,5′-modified 2′,5′-dideoxyuridines. Heterocyclic Communications, 2015, 21, 297-301.	1.2	1
72	Synthesis and evaluation of C-5 modified 2′-deoxyuridine monophosphates as inhibitors of M. tuberculosis thymidylate synthase. Bioorganic and Medicinal Chemistry, 2015, 23, 7131-7137.	3.0	25

#	Article	IF	CITATIONS
73	Versatile synthesis of oxime-containing acyclic nucleoside phosphonates – synthetic solutions and antiviral activity. Organic and Biomolecular Chemistry, 2015, 13, 10946-10956.	2.8	2
74	The role of HCV e2 protein glycosylation in functioning of virus envelope proteins in insect and Mammalian cells. Acta Naturae, 2015, 7, 87-97.	1.7	3
75	5-Arylaminouracil Derivatives as Potential Dual-Action Agents. Acta Naturae, 2015, 7, 113-5.	1.7	1
76	Acyclovir phosphoramidates as potential anti-HIV drugs. Russian Chemical Bulletin, 2014, 63, 1192-1196.	1.5	2
77	Human herpes simplex virus: Life cycle and development of inhibitors. Biochemistry (Moscow), 2014, 79, 1635-1652.	1.5	107
78	2′-Fluoronucleotides as substrates of viral replicative polymerases. Molecular Biology, 2014, 48, 727-733.	1.3	0
79	Specific features of HIV-1 integrase inhibition by bisphosphonate derivatives. European Journal of Medicinal Chemistry, 2014, 73, 73-82.	5.5	18
80	Selective inhibitor of histone deacetylase 6 (tubastatin A) suppresses proliferation of hepatitis C virus replicon in culture of human hepatocytes. Biochemistry (Moscow), 2014, 79, 637-642.	1.5	21
81	A new antiviral: Chimeric 3TC–AZT phosphonate efficiently inhibits HIV-1 in human tissues ex vivo. Antiviral Research, 2014, 109, 125-131.	4.1	7
82	Role of N-linked glycans of HCV glycoprotein E1 in folding of structural proteins and formation of viral particles. Molecular Biology, 2013, 47, 131-139.	1.3	1
83	Inhibition of Mycobacterium tuberculosis strains H37Rv and MDR MS-115 by a new set of C5 modified pyrimidine nucleosides. Bioorganic and Medicinal Chemistry, 2013, 21, 4874-4884.	3.0	41
84	Synthesis and studies of new 6-[halo(diphenyl)methyl]- and 6-(thiophen-2-ylmethyl)pyrimidin-4(3H)-ones as possible HIV-1 reverse transcriptase inhibitors. Russian Chemical Bulletin, 2013, 62, 797-801.	1.5	0
85	Synthesis and Anti-HIV-1 Activity of 1-[ï‰-(Phenoxy)Alkyl and -Alkenyl]Uracil Derivatives. Pharmaceutical Chemistry Journal, 2013, 47, 459-463.	0.8	3
86	Hydroxylamine derivatives for regulation of spermine and spermidine metabolism. Biochemistry (Moscow), 2013, 78, 1431-1446.	1.5	3
87	Structure-activity evaluation of new uracil-based non-nucleoside inhibitors of HIV reverse transcriptase. MedChemComm, 2013, 4, 1443.	3.4	11
88	Benzohydroxamic acids as potent and selective anti-HCV agents. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5936-5940.	2.2	20
89	Novel inhibitors of <i>Mycobacterium tuberculosis</i> growth based on modified pyrimidine nucleosides and their analogues. Russian Chemical Reviews, 2013, 82, 896-915.	6.5	23
90	Synthesis and studies of biological activity of new 8-{[(adamant-1-yl)alkyl]amino}theophylline derivatives. Russian Chemical Bulletin, 2013, 62, 2544-2546.	1.5	1

#	Article	IF	CITATIONS
91	N1,N3-disubstituted uracils as nonnucleoside inhibitors of HIV-1 reverse transcriptase. Bioorganic and Medicinal Chemistry, 2013, 21, 1150-1158.	3.0	28
92	5′-Nor carbocyclic nucleosides: unusual nonnucleoside inhibitors of HIV-1 reverse transcriptase. MedChemComm, 2013, 4, 741.	3.4	10
93	HCV and Oxidative Stress in the Liver. Viruses, 2013, 5, 439-469.	3.3	175
94	Oxidative stress induced by HIV-1 reverse transcriptase modulates the enzyme's performance in gene immunization. Human Vaccines and Immunotherapeutics, 2013, 9, 2111-2119.	3.3	41
95	Synthesis and biological activity of new 6-benzylisocytosine derivatives: non-nucleoside HIV-1 reverse transcriptase inhibitors. Pharmaceutical Chemistry Journal, 2012, 46, 397-401.	0.8	4
96	Benzophenone derivatives of pyrimidines as effective non-nucleoside inhibitors of wild-type and drug-resistant HIV-1 reverse transcriptase. Doklady Biochemistry and Biophysics, 2012, 447, 280-281.	0.9	3
97	The synthesis and antituberculosis activity of 5′-nor carbocyclic uracil derivatives. Bioorganic and Medicinal Chemistry, 2012, 20, 6680-6686.	3.0	49
98	Biogenic polyamines spermine and spermidine activate RNA polymerase and inhibit RNA helicase of hepatitis C virus. Biochemistry (Moscow), 2012, 77, 1172-1180.	1.5	13
99	Effect of deoxynojirimycin derivatives on morphogenesis of hepatitis C virus. Molecular Biology, 2012, 46, 579-587.	1.3	1
100	Synthesis and Antiâ€HIV Properties of New Carbamate Prodrugs of AZT. Chemical Biology and Drug Design, 2012, 80, 947-952.	3.2	13
101	Chemically induced oxidative stress increases polyamine levels by activating the transcription of ornithine decarboxylase and spermidine/spermine-N1-acetyltransferase in human hepatoma HUH7 cells. Biochimie, 2012, 94, 1876-1883.	2.6	49
102	Phosphoramidate derivatives of acyclovir: Synthesis and antiviral activity in HIV-1 and HSV-1 models in vitro. Bioorganic and Medicinal Chemistry, 2012, 20, 5802-5809.	3.0	21
103	Non-hydrolysable analogues of inorganic pyrophosphate as inhibitors of hepatitis C virus RNA-dependent RNA-polymerase. Russian Journal of Bioorganic Chemistry, 2012, 38, 224-229.	1.0	14
104	The Use of Novel C-Methylated Spermidine Derivatives To Investigate the Regulation of Polyamine Metabolism. Journal of Medicinal Chemistry, 2011, 54, 4611-4618.	6.4	19
105	Hepatitis C Virus Proteins Activate NRF2/ARE Pathway by Distinct ROS-Dependent and Independent Mechanisms in HUH7 Cells. PLoS ONE, 2011, 6, e24957.	2.5	138
106	Cell defense systems against oxidative stress and endoplasmic reticulum stress: Mechanisms of regulation and the effect of hepatitis C virus. Molecular Biology, 2011, 45, 110-122.	1.3	9
107	Leishmania donovani: Structural insignt in the recognition of C-methylated analogues of spermidine as natural polyamines. Molecular Biology, 2011, 45, 619-623.	1.3	2
108	1-[2-(2-Benzoyl- and 2-benzylphenoxy)ethyl]uracils as potent anti-HIV-1 agents. Bioorganic and Medicinal Chemistry, 2011, 19, 5794-5802.	3.0	37

#	Article	IF	CITATIONS
109	Inhibition of the helicase activity of the HCV NS3 protein by symmetrical dimeric bis-benzimidazoles. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5331-5335.	2.2	17
110	Methylated Polyamines as Research Tools. Methods in Molecular Biology, 2011, 720, 449-461.	0.9	8
111	Screening of Potential HIV-1 Inhibitors/ Replication Blockers Using Secure Lentiviral in Vitro System. Acta Naturae, 2011, 3, 55-65.	1.7	12
112	Screening of Potential HIV-1 Inhibitors/Replication Blockers Using Secure Lentiviral inÂVitro System. Acta Naturae, 2011, 3, 55-65.	1.7	5
113	Synthesis and antiviral evaluation against the Vaccinia virus of new N 1-oxide analogs of 5′-noraristeromycin. Russian Journal of Bioorganic Chemistry, 2010, 36, 730-733.	1.0	6
114	Novel convenient synthesis of biologically active esters of hydroxylamine. Amino Acids, 2010, 38, 509-517.	2.7	16
115	Hepatitis C virus structural proteins and virus-like particles produced in recombinant baculovirus-infected insect cells. Molecular Biology, 2010, 44, 97-108.	1.3	7
116	Baculovirus vectors for efficient gene delivery and expression in mammalian cells. Molecular Biology, 2010, 44, 479-487.	1.3	6
117	Interactions between the hepatitis C virus protein NS3 and polymethylene derivatives of nucleic bases. Molecular Biology, 2010, 44, 931-938.	1.3	Ο
118	Antiviral Properties, Metabolism, and Pharmacokinetics of a Novel Azolo-1,2,4-Triazine-Derived Inhibitor of Influenza A and B Virus Replication. Antimicrobial Agents and Chemotherapy, 2010, 54, 2017-2022.	3.2	64
119	Synthesis and Biological Characterization of Novel Charge-Deficient Spermine Analogues. Journal of Medicinal Chemistry, 2010, 53, 5738-5748.	6.4	27
120	Potent cross-reactive immune response against the wild-type and drug-resistant forms of HIV reverse transcriptase after the chimeric gene immunization. Vaccine, 2010, 28, 1975-1986.	3.8	12
121	New 5-Modified Pyrimidine Nucleoside Inhibitors of Mycobacterial Growth. Acta Naturae, 2010, 2, 108-110.	1.7	9
122	Hepatitis C virus NS5A protein modulates template selection by the RNA polymerase in in vitro system. FEBS Letters, 2009, 583, 277-280.	2.8	9
123	RNA-dependent RNA polymerase of hepatitis C virus: Study on inhibition by α,γ-diketo acid derivatives. Biochemistry (Moscow), 2009, 74, 834-841.	1.5	3
124	Transcription and its regulation in mammalian and human mitochondria. Molecular Biology, 2009, 43, 198-210.	1.3	3
125	The Interaction between the RNA-Dependent RNA-Polymerase of the Hepatitis Virus and RNA Matrices. Acta Naturae, 2009, 1, 88-90.	1.7	0
126	Hepatitis C virus helicase/NTPase: an efficient expression system and new inhibitors. Biochemistry (Moscow), 2008, 73, 660-668.	1.5	10

#	Article	IF	CITATIONS
127	Multisubunit RNA Polymerases Melt Only a Single DNA Base Pair Downstream of the Active Site. Journal of Biological Chemistry, 2007, 282, 21578-21582.	3.4	19
128	Isolation and site-directed mutagenesis of DNA methyltransferase Sssl. Molecular Biology, 2007, 41, 110-117.	1.3	10
129	Determination of the melting site of the DNA duplex in the active center of bacterial RNA-polymerase by fluorescence quenching technique. Doklady Biochemistry and Biophysics, 2007, 416, 285-289.	0.9	1
130	Development of the system ensuring a high-level expression of hepatitis C virus nonstructural NS5B and NS5A proteins. Protein Expression and Purification, 2006, 48, 14-23.	1.3	53
131	Hepatitis C virus RNA-dependent RNA polymerase: Study on the inhibition mechanism by pyrogallol derivatives. Biochemistry (Moscow), 2006, 71, 1021-1026.	1.5	4
132	Interaction of HIV-1 Reverse Transcriptase with Modified Oligonucleotide Primers Containing 2Â-O-Â-D-Ribofuranosyladenosine. Biochemistry (Moscow), 2004, 69, 130-136.	1.5	1
133	New Non-nucleoside Inhibitors of Hepatitis C Virus RNA-Dependent RNA Polymerase. Biochemistry (Moscow), 2004, 69, 782-788.	1.5	5
134	Photoaffinity Modification of Bacteriophage T7 DNA-Dependent RNA Polymerase with a Reaction Product Containing an Azido Derivative of UTP. Molecular Biology, 2004, 38, 907-913.	1.3	0
135	Mutations Conferring Drug Resistance Affect Eukaryotic Expression of HIV Type 1 Reverse Transcriptase. AIDS Research and Human Retroviruses, 2004, 20, 191-201.	1.1	18
136	Gene immunization may induce secondary antibodies reacting with DNA. Vaccine, 2004, 22, 1576-1585.	3.8	13
137	Reverse transcriptase-based DNA vaccines against drug-resistant HIV-1 tested in a mouse model. Vaccine, 2004, 22, 1810-1819.	3.8	10
138	Oligonucleotides Containing Disaccharide Nucleosides: Synthesis, Physicochemical, and Substrate Properties. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1117-1118.	1.1	1
139	An additional 2′-ribofuranose residue at a specific position of the DNA primer prevents Its elongation by HIV-1 reverse transcriptase. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 681-684.	2.2	11
140	Inhibition of HIV-1 reverse transcriptase by aryl-substituted naphto- and anthraquinones. Doklady Biochemistry and Biophysics, 2002, 382, 56-59.	0.9	16
141	Title is missing!. Molecular Biology, 2002, 36, 543-550.	1.3	1
142	Structural-functional analysis of bacteriophage T7 RNA polymerase. Biochemistry (Moscow), 2002, 67, 1124-1135.	1.5	37
143	Title is missing!. Molecular Biology, 2001, 35, 717-729.	1.3	14
144	DNA-Encoding Enzymatically Active HIV-1 Reverse Transcriptase, but Not the Inactive Mutant, Confers Resistance to Experimental HIV-1 Challenge. Intervirology, 2000, 43, 288-293.	2.8	38

#	Article	IF	CITATIONS
145	Title is missing!. Molecular Biology, 2000, 34, 913-920.	1.3	8
146	Immunogenic Properties of Reverse Transcriptase of HIV Type 1 Assessed by DNA and Protein Immunization of Rabbits. AIDS Research and Human Retroviruses, 2000, 16, 1269-1280.	1.1	16
147	Mapping of T7 RNA polymerase active site with novel reagents - oligonucleotides with reactive dialdehyde groups. FEBS Letters, 1999, 442, 20-24.	2.8	21
148	Eukaryotic expression of enzymatically active human immunodeficiency virus type 1 reverse transcriptase. FEBS Letters, 1999, 447, 232-236.	2.8	16
149	Synthesis of Mixed Ribo/Deoxyribopolynucleotides by Mutant T7 RNA Polymerase. Nucleosides & Nucleotides, 1999, 18, 1239-1240.	0.5	0
150	Interaction of tRNA-Derivatives and Oligonucleotide Primers with AZT-Resistant Mutants of HIV-1 Reverse Transcriptase. Bioorganic and Medicinal Chemistry, 1998, 6, 2041-2049.	3.0	2
151	Mutant T7 RNA polymerase is capable of catalyzing DNA primer extension reaction. FEBS Letters, 1998, 423, 189-192.	2.8	7
152	Synthesis of mixed ribo/deoxyribopolynucleotides by mutant T7 RNA polymerase. FEBS Letters, 1998, 439, 302-306.	2.8	12
153	Recent studies of T7 RNA polymerase mechanism. FEBS Letters, 1998, 440, 264-267.	2.8	37
154	Deoxyribonucleotide-containing RNAs: a novel class of templates for HIV- 1 reverse transcriptase. Nucleic Acids Research, 1997, 25, 4614-4618.	14.5	15
155	Substrate properties of C′-methyl UTP derivatives in T7 RNA polymerase reactions. Evidence for N-type NTP conformation. FEBS Letters, 1997, 400, 263-266.	2.8	4
156	Structure and aminoacylation capacities of tRNA transcripts containing deoxyribonucleotides. Rna, 1997, 3, 893-904.	3.5	25
157	Targeted mutagenesis identifies Asp-569 as a catalytically critical residue in T7 RNA polymerase. Molecular Genetics and Genomics, 1995, 247, 110-113.	2.4	8
158	Mutants of T7 RNA polymerase that are able to synthesize both RNA and DNA. FEBS Letters, 1995, 369, 165-168.	2.8	38
159	The studies of cooperative regions in T7 RNA polymerase. FEBS Letters, 1994, 349, 429-432.	2.8	5
160	Random mntagenesis of the gene for bacteriophage T7 RNA polymerase. Molecular Genetics and Genomics, 1993, 238, 455-458.	2.4	9
161	Interactions of the HIV-1 reverse transcriptase â€~AZT-resistant' mutant with substrates and AZT-TP. FEBS Letters, 1993, 325, 237-241.	2.8	16
162	Tyr-571 is involved in the T7 RNA polymerase binding to its promoter. FEBS Letters, 1993, 320, 9-12.	2.8	5

Sergey Kochetkov

#	Article	IF	CITATIONS
163	On the functional role of the Tyr-639 residue of bacteriophage T7 RNA polymerase. FEBS Letters, 1992, 306, 129-132.	2.8	6
164	Lys631 residue in the active site of the bacteriophage T7 RNA polymerase. Affinity labeling and site-directed mutagenesis. FEBS Journal, 1991, 195, 841-847.	0.2	26
165	Inactivation of bacteriophage T7 DNA-dependent RNA polymerase by 5'-p-fluorosulfonylbenzoyladenosine. Identification of the modification site and the effect of the modification on enzyme action. FEBS Journal, 1990, 191, 99-103.	0.2	12
166	Physico-chemical principles of cAMP-dependent protein phosphorylation. FEBS Letters, 1984, 173, 179-184.	2.8	2
167	Studies on the Mechanism of Action of the Histone Kinase Dependent on Adenosine 3',5'-Monophosphate. Investigation of Protein-Protein Interaction by Electron Spin-Resonance Spectroscopy and Stopped-Flow Methods. FEBS Journal, 1983, 132, 339-344.	0.2	4
168	Studies on the mechanism of action of the histone kinase dependent on adenosine 3',5'-monophosphate. Fast kinetics of histone H1 phosphorylation. FEBS Journal, 1983, 135, 491-495.	0.2	3
169	Studies on the Mechanism of Action of the Histone Kinase Dependent on Adenosine 3',5'-Monophosphate. Interaction of ATP with the Catalytic Subunit of the Pig-Brain Enzyme: Application of the Quenched-Flow Technique. FEBS Journal, 1981, 115, 297-301.	0.2	4
170	The Mechanism of Action of Brain Cyclic AMP-dependent Protein Kinase: Structure of Active Site, Mechanism of Dissociation of the Holoenzyme, and Possible Biological Role of Its Subunits. Proceedings in Life Sciences, 1981, , 44-58.	0.5	0
171	Determination of binding parameters of cyclic AMP and its analogs to cyclic AMP-dependent protein kinase by the fluorescent probe method. Biochimica Et Biophysica Acta - Biomembranes, 1979, 569, 145-152.	2.6	8
172	Studies on the Mechanism of Action of Histone Kinase Dependent on Adenosine 3':5'-Monophosphate. Evidence for Involvement of Histidine and Lysine Residues in the Phosphotransferase Reaction. FEBS Journal, 1977, 81, 111-118.	0.2	38
173	Role of a histidine residue in the active site of cyclic AMP-dependent histone kinase. FEBS Letters, 1976, 71, 212-214.	2.8	20
174	Isolation of the regulatory subunit of pig-brain histone kinase by affinity chromatography on cyclic-AMP-containing adsorbent. FEBS Letters, 1974, 49, 61-64.	2.8	17