
Robert P Mason

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5957626/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environmental Science & Technology, 2013, 47, 4967-4983.	10.0	1,729
2	Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics, 2010, 10, 5951-5964.	4.9	1,155
3	The biogeochemical cycling of elemental mercury: Anthropogenic influences. Geochimica Et Cosmochimica Acta, 1994, 58, 3191-3198.	3.9	942
4	The Case for Atmospheric Mercury Contamination in Remote Areas. Environmental Science & Technology, 1998, 32, 1-7.	10.0	868
5	Sulfide Controls on Mercury Speciation and Bioavailability to Methylating Bacteria in Sediment Pore Waters. Environmental Science & Technology, 1999, 33, 951-957.	10.0	625
6	Uptake, Toxicity, and Trophic Transfer of Mercury in a Coastal Diatom. Environmental Science & Technology, 1996, 30, 1835-1845.	10.0	571
7	Mercury biogeochemical cycling in the ocean and policy implications. Environmental Research, 2012, 119, 101-117.	7.5	477
8	Mercury Methylation by Dissimilatory Iron-Reducing Bacteria. Applied and Environmental Microbiology, 2006, 72, 7919-7921.	3.1	448
9	Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16586-16591.	7.1	398
10	Factors Controlling the Bioaccumulation of Mercury, Methylmercury, Arsenic, Selenium, and Cadmium by Freshwater Invertebrates and Fish. Archives of Environmental Contamination and Toxicology, 2000, 38, 283-297.	4.1	333
11	The Influence of Sulfide on Solid-Phase Mercury Bioavailability for Methylation by Pure Cultures of Desulfobulbus propionicus(1pr3). Environmental Science & amp; Technology, 2001, 35, 127-132.	10.0	270
12	The distribution and biogeochemical cycling of mercury in the equatorial Pacific Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 1993, 40, 1897-1924.	1.4	239
13	Human impacts on open ocean mercury concentrations. Global Biogeochemical Cycles, 2007, 21, .	4.9	239
14	Speciation and Cycling of Mercury in Lavaca Bay, Texas, Sediments. Environmental Science & Technology, 1999, 33, 7-13.	10.0	226
15	An Improved Global Model for Air-Sea Exchange of Mercury: High Concentrations over the North Atlantic. Environmental Science & Technology, 2010, 44, 8574-8580.	10.0	225
16	Mercury speciation in the San Francisco Bay estuary. Marine Chemistry, 2003, 80, 199-225.	2.3	208
17	Mercury in the Chesapeake Bay. Marine Chemistry, 1999, 65, 77-96.	2.3	205
18	Mercury in the North Atlantic. Marine Chemistry, 1998, 61, 37-53.	2.3	198

#	Article	IF	CITATIONS
19	Air-sea exchange in the global mercury cycle. Global Biogeochemical Cycles, 2007, 21, .	4.9	193
20	Factors influencing the oxidation, reduction, methylation and demethylation of mercury species in coastal waters. Marine Chemistry, 2007, 107, 278-294.	2.3	182
21	Sources and deposition of reactive gaseous mercury in the marine atmosphere. Atmospheric Environment, 2009, 43, 2278-2285.	4.1	179
22	Reactive gaseous mercury formation in the North Pacific Ocean's marine boundary layer: A potential role of halogen chemistry. Journal of Geophysical Research, 2003, 108, .	3.3	160
23	Constants for mercury binding by dissolved organic matter isolates from the Florida Everglades. Geochimica Et Cosmochimica Acta, 2001, 65, 4445-4451.	3.9	158
24	The distribution and speciation of mercury in the South and equatorial Atlantic. Deep-Sea Research Part II: Topical Studies in Oceanography, 1999, 46, 937-956.	1.4	157
25	Sedimentâ^'Water Fluxes of Mercury in Lavaca Bay, Texas. Environmental Science & Technology, 1999, 33, 663-669.	10.0	155
26	Observational and Modeling Constraints on Global Anthropogenic Enrichment of Mercury. Environmental Science & Technology, 2015, 49, 4036-4047.	10.0	152
27	Mercury methylation in estuaries: Insights from using measuring rates using stable mercury isotopes. Marine Chemistry, 2006, 102, 134-147.	2.3	151
28	Accumulation of mercury in estuarine food chains. Biogeochemistry, 1998, 40, 235-247.	3.5	149
29	Mercury in Lake Michigan. Environmental Science & amp; Technology, 1997, 31, 942-947.	10.0	148
30	Mercury in the Atlantic Ocean: factors controlling air–sea exchange of mercury and its distribution in the upper waters. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 2829-2853.	1.4	144
31	Cycling of volatile mercury in temperate lakes. Water, Air, and Soil Pollution, 1991, 56, 791-803.	2.4	139
32	Speciation and Fate of Arsenic in Three Lakes of the Aberjona Watershed. Environmental Science & Technology, 1994, 28, 577-585.	10.0	135
33	Mercury distributions in the North Pacific Ocean—20 years of observations. Marine Chemistry, 2004, 90, 3-19.	2.3	132
34	Methylmercury production in sediments of Chesapeake Bay and the mid-Atlantic continental margin. Marine Chemistry, 2009, 114, 86-101.	2.3	132
35	Concentration, distribution, and bioavailability of mercury and methylmercury in sediments of Baltimore Harbor and Chesapeake Bay, Maryland, USA. Environmental Toxicology and Chemistry, 1999, 18, 2438-2447.	4.3	127
36	Updated Global and Oceanic Mercury Budgets for the United Nations Global Mercury Assessment 2018. Environmental Science & Technology, 2018, 52, 11466-11477.	10.0	125

#	Article	IF	CITATIONS
37	Mercury and methylmercury transport through an urban watershed. Water Research, 1998, 32, 321-330.	11.3	116
38	Freshwater discharges drive high levels of methylmercury in Arctic marine biota. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11789-11794.	7.1	116
39	CONCENTRATION, DISTRIBUTION, AND BIOAVAILABILITY OF MERCURY AND METHYLMERCURY IN SEDIMENTS OF BALTIMORE HARBOR ANDCHESAPEAKE BAY, MARYLAND, USA. Environmental Toxicology and Chemistry, 1999, 18, 2438.	4.3	113
40	Methylmercury Production in Estuarine Sediments: Role of Organic Matter. Environmental Science & Technology, 2013, 47, 695-700.	10.0	111
41	Contrasting Effects of Marine and Terrestrially Derived Dissolved Organic Matter on Mercury Speciation and Bioavailability in Seawater. Environmental Science & Technology, 2015, 49, 5965-5972.	10.0	109
42	Enhanced availability of mercury bound to dissolved organic matter for methylation in marine sediments. Geochimica Et Cosmochimica Acta, 2016, 194, 153-162.	3.9	105
43	The fate and transport of mercury, methylmercury, and other trace metals in chesapeake bay tributaries. Water Research, 2001, 35, 501-515.	11.3	103
44	Mercury and methylmercury cycling in sediments of the midâ€Atlantic continental shelf and slope. Limnology and Oceanography, 2010, 55, 2703-2722.	3.1	101
45	Mercury associated with colloidal material in an estuarine and an open-ocean environment. Marine Chemistry, 1996, 55, 177-188.	2.3	99
46	Mercury Isotope Study of Sources and Exposure Pathways of Methylmercury in Estuarine Food Webs in the Northeastern U.S Environmental Science & Technology, 2014, 48, 10089-10097.	10.0	97
47	Intestinal Solubilization of Particle-Associated Organic and Inorganic Mercury as a Measure of Bioavailability to Benthic Invertebrates. Environmental Science & Technology, 1999, 33, 1871-1876.	10.0	94
48	INFLUENCE OF DISSOLVED ORGANIC MATTER ON THE COMPLEXATION OF MERCURY UNDER SULFIDIC CONDITIONS. Environmental Toxicology and Chemistry, 2007, 26, 624.	4.3	92
49	An examination of the factors influencing the flux of mercury, methylmercury and other constituents from estuarine sediment. Marine Chemistry, 2006, 102, 96-110.	2.3	90
50	Progress on Understanding Atmospheric Mercury Hampered by Uncertain Measurements. Environmental Science & Technology, 2014, 48, 7204-7206.	10.0	90
51	A Critical Time for Mercury Science to Inform Global Policy. Environmental Science & Technology, 2018, 52, 9556-9561.	10.0	90
52	Mercury and methylmercury in Hudson River sediment: impact of tidal resuspension on partitioning and methylation. Marine Chemistry, 2004, 90, 75-89.	2.3	89
53	ESTIMATION OF MERCURY-SULFIDE SPECIATION IN SEDIMENT PORE WATERS USING OCTANOL–WATER PARTITIONING AND IMPLICATIONS FOR AVAILABILITY TO METHYLATING BACTERIA. Environmental Toxicology and Chemistry, 1999, 18, 2138.	4.3	88
54	Toward an Assessment of the Global Inventory of Present-Day Mercury Releases to Freshwater Environments. International Journal of Environmental Research and Public Health, 2017, 14, 138.	2.6	87

#	Article	IF	CITATIONS
55	Multiâ€decadal decline of mercury in the North Atlantic atmosphere explained by changing subsurface seawater concentrations. Geophysical Research Letters, 2012, 39, .	4.0	85
56	Benthic and Pelagic Pathways of Methylmercury Bioaccumulation in Estuarine Food Webs of the Northeast United States. PLoS ONE, 2014, 9, e89305.	2.5	84
57	An Examination of Methods for the Measurements of Reactive Gaseous Mercury in the Atmosphere. Environmental Science & Technology, 2001, 35, 1209-1216.	10.0	83
58	Monitoring the Response to Changing Mercury Deposition. Environmental Science & Technology, 2005, 39, 14A-22A.	10.0	83
59	The impact of resuspension on sediment mercury dynamics, and methylmercury production and fate: A mesocosm study. Marine Chemistry, 2006, 102, 300-315.	2.3	83
60	Anthropogenic mercury emissions in South Africa: Coal combustion in power plants. Atmospheric Environment, 2008, 42, 6620-6626.	4.1	83
61	Mercury concentration and speciation in the coastal and open ocean boundary layer. Journal of Geophysical Research, 2007, 112, .	3.3	82
62	Nutrient supply and mercury dynamics in marine ecosystems: A conceptual model. Environmental Research, 2012, 119, 118-131.	7.5	78
63	The sources and composition of mercury in Pacific Ocean rain. Journal of Atmospheric Chemistry, 1992, 14, 489-500.	3.2	76
64	Mercury Speciation in Drainage from the New Idria Mercury Mine, California. Environmental Science & Technology, 2000, 34, 4773-4779.	10.0	76
65	How closely do mercury trends in fish and other aquatic wildlife track those in the atmosphere? – Implications for evaluating the effectiveness of the Minamata Convention. Science of the Total Environment, 2019, 674, 58-70.	8.0	75
66	Mercury emissions from natural processes and their importance in the global mercury cycle. , 2009, , 173-191.		75
67	Concentration of Mercury, Methylmercury, Cadmium, Lead, Arsenic, and Selenium in the Rain and Stream Water of Two Contrasting Watersheds in Western Maryland. Water Research, 2001, 35, 4039-4052.	11.3	74
68	METHYLMERCURY UPTAKE AND DISTRIBUTION KINETICS IN SHEEPSHEAD MINNOWS, CYPRINODON VARIEGATUS, AFTER EXPOSURE TO CH3Hg-SPIKED FOOD. Environmental Toxicology and Chemistry, 2004, 23, 2138.	4.3	74
69	The concentration, speciation and sources of mercury in Chesapeake Bay precipitation. Atmospheric Environment, 1997, 31, 3541-3550.	4.1	72
70	Sources of Mercury Exposure for U.S. Seafood Consumers: Implications for Policy. Environmental Health Perspectives, 2010, 118, 137-143.	6.0	72
71	Elemental Mercury Concentrations and Fluxes in the Tropical Atmosphere and Ocean. Environmental Science & Technology, 2014, 48, 11312-11319.	10.0	72
72	Mercury Methylation by <i>Desulfovibrio desulfuricans</i> ND132 in the Presence of Polysulfides. Applied and Environmental Microbiology, 2002, 68, 5741-5745.	3.1	71

#	Article	IF	CITATIONS
73	An examination of the factors influencing mercury and methylmercury particulate distributions, methylation and demethylation rates in laboratory-generated marine snow. Marine Chemistry, 2015, 177, 753-762.	2.3	70
74	Atmospheric deposition to the Chesapeake Bay watershed—regional and local sources. Atmospheric Environment, 1997, 31, 3531-3540.	4.1	69
75	Development and application of a poly(2,2′-dithiodianiline) (PDTDA)-coated screen-printed carbon electrode in inorganic mercury determination. Electrochimica Acta, 2010, 55, 4240-4246.	5.2	66
76	Investigation of Porewater Sampling Methods for Mercury and Methylmercury. Environmental Science & Technology, 1998, 32, 4031-4040.	10.0	65
77	MercNet: a national monitoring network to assess responses to changing mercury emissions in the United States. Ecotoxicology, 2011, 20, 1713-1725.	2.4	65
78	Drivers of Surface Ocean Mercury Concentrations and Air–Sea Exchange in the West Atlantic Ocean. Environmental Science & Technology, 2013, 47, 7757-7765.	10.0	65
79	Impacts of farmed fish consumption and food trade on methylmercury exposure in China. Environment International, 2018, 120, 333-344.	10.0	65
80	Sediment-Porewater Partitioning, Total Sulfur, and Methylmercury Production in Estuaries. Environmental Science & Technology, 2014, 48, 954-960.	10.0	63
81	An intercomparison of procedures for the determination of total mercury in seawater and recommendations regarding mercury speciation during GEOTRACES cruises. Limnology and Oceanography: Methods, 2012, 10, 90-100.	2.0	62
82	The effect of resuspension on the fate of total mercury and methyl mercury in a shallow estuarine ecosystem: a mesocosm study. Marine Chemistry, 2004, 86, 121-137.	2.3	61
83	Dimethylmercury Formation Mediated by Inorganic and Organic Reduced Sulfur Surfaces. Scientific Reports, 2016, 6, 27958.	3.3	61
84	Arctic mercury cycling. Nature Reviews Earth & Environment, 2022, 3, 270-286.	29.7	60
85	Mercury accumulation and flux across the gills and the intestine of the blue crab (Callinectes) Tj ETQq1 1 0.7843	14.rgBT /C 4.0	verlock 10 T
86	Total mercury in the water column near the shelf edge of the European continental margin. Marine Chemistry, 2004, 90, 21-29.	2.3	50
87	Effect of Inorganic and Organic Ligands on the Bioavailability of Methylmercury as Determined by Using a <i>mer-lux</i> Bioreporter. Applied and Environmental Microbiology, 2012, 78, 7276-7282.	3.1	50
88	Methylmercury Concentrations in Fish from Tidal Waters of The Chesapeake Bay. Archives of Environmental Contamination and Toxicology, 2006, 51, 425-437.	4.1	48
89	Sulfide Controls on Mercury Speciation and Bioavailability to Methylating Bacteria in Sediment Pore Waters. Environmental Science & Technology, 1999, 33, 1780-1780.	10.0	47
90	Interannual Variability in the Speciation and Mobility of Arsenic in a Dimictic Lake. Environmental Science & Technology, 1995, 29, 2157-2161.	10.0	46

#	Article	IF	CITATIONS
91	The concentration and distribution of mercury in Lake Michigan. Science of the Total Environment, 1998, 213, 213-228.	8.0	46
92	Estimate of mercury emission from gasoline and diesel fuel consumption, San Francisco Bay area, California. Atmospheric Environment, 2005, 39, 101-105.	4.1	43
93	Mercury Fate and Transport in the Global Atmosphere. , 2009, , .		43
94	The impact of sea ice on the air-sea exchange of mercury in the Arctic Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2019, 144, 28-38.	1.4	43
95	Factors Controlling the Bioavailability of Ingested Methylmercury to Channel Catfish and Atlantic Sturgeon. Environmental Science & amp; Technology, 2002, 36, 5124-5129.	10.0	41
96	Sources of water column methylmercury across multiple estuaries in the Northeast U.S Marine Chemistry, 2015, 177, 721-730.	2.3	41
97	Methylmercury accumulation and fluxes across the intestine of channel catfish, Ictalurus punctatus. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2002, 132, 247-259.	2.6	40
98	Effect of tidal resuspension on benthic–pelagic coupling in an experimental ecosystem study. Marine Ecology - Progress Series, 2010, 413, 33-53.	1.9	40
99	A new method for the investigation of mercury redox chemistry in natural waters utilizing deflatable Teflon® bags and additions of isotopically labeled mercury. Analytica Chimica Acta, 2006, 558, 211-221.	5.4	39
100	The air-sea exchange of mercury in the low latitude Pacific and Atlantic Oceans. Deep-Sea Research Part I: Oceanographic Research Papers, 2017, 122, 17-28.	1.4	39
101	Mercury and methylmercury incidence and bioaccumulation in plankton from the central Pacific Ocean. Marine Chemistry, 2015, 177, 772-780.	2.3	38
102	Experimental evidence for recovery of mercury-contaminated fish populations. Nature, 2022, 601, 74-78.	27.8	38
103	The Global Mercury Cycle: Oceanic and Anthropogenic Aspects. , 1996, , 85-108.		37
104	Metal accumulation in Baltimore Harbor: current and past inputs. Applied Geochemistry, 2004, 19, 1801-1825.	3.0	37
105	An examination of the ingestion, bioaccumulation, and depuration of titanium dioxide nanoparticles by the blue mussel (Mytilus edulis) and the eastern oyster (Crassostrea virginica). Marine Environmental Research, 2015, 110, 45-52.	2.5	37
106	Integrated Mercury Monitoring Program for Temperate Estuarine and Marine Ecosystems on the North American Atlantic Coast. EcoHealth, 2008, 5, 426-441.	2.0	36
107	Impact of Water-Induced Soil Erosion on the Terrestrial Transport and Atmospheric Emission of Mercury in China. Environmental Science & Technology, 2018, 52, 6945-6956.	10.0	36
108	The impact of the Three Gorges Dam on the fate of metal contaminants across the river–ocean continuum. Water Research, 2020, 185, 116295.	11.3	36

#	Article	IF	CITATIONS
109	Estimation of mercuryâ€sulfide speciation in sediment pore waters using octanol—water partitioning and implications for availability to methylating bacteria. Environmental Toxicology and Chemistry, 1999, 18, 2138-2141.	4.3	35
110	Organomercury Compounds in the Environment. , 0, , 57-99.		35
111	Determination of inorganic mercury using a polyaniline and polyaniline-methylene blue coated screen-printed carbon electrode. International Journal of Environmental Analytical Chemistry, 2010, 90, 671-685.	3.3	35
112	Benefits of Regulating Hazardous Air Pollutants from Coal and Oil-Fired Utilities in the United States. Environmental Science & Technology, 2016, 50, 2117-2120.	10.0	35
113	Investigations into the bioavailability and bioaccumulation of mercury and other trace metals to the sea cucumber, Sclerodactyla briareus, using in vitro solubilization. Marine Pollution Bulletin, 2003, 46, 1600-1608.	5.0	34
114	Decadal mercury trends in San Francisco Estuary sediments. Environmental Research, 2007, 105, 53-66.	7.5	34
115	Mercury contamination history of an estuarine floodplain reconstructed from a 210Pb-dated sed sed ment core (Berg River, South Africa). Marine Pollution Bulletin, 2009, 59, 116-122.	5.0	34
116	Role of Sediment Resuspension on Estuarine Suspended Particulate Mercury Dynamics. Environmental Science & Technology, 2018, 52, 7736-7744.	10.0	34
117	Seasonal Cycling and Transport of Mercury and Methylmercury in the Turbidity Maximum of the Delaware Estuary. Aquatic Geochemistry, 2016, 22, 313-336.	1.3	33
118	Factors controlling the photochemical degradation of methylmercury in coastal and oceanic waters. Marine Chemistry, 2017, 196, 116-125.	2.3	32
119	An assessment of the impact of artisanal and commercial gold mining on mercury and methylmercury levels in the environment and fish in Cote d'Ivoire. Science of the Total Environment, 2019, 665, 1158-1167.	8.0	32
120	The Global Marine Selenium Cycle: Insights From Measurements and Modeling. Global Biogeochemical Cycles, 2018, 32, 1720-1737.	4.9	30
121	The Use of a Mercury Biosensor to Evaluate the Bioavailability of Mercury-Thiol Complexes and Mechanisms of Mercury Uptake in Bacteria. PLoS ONE, 2015, 10, e0138333.	2.5	30
122	Factors Controlling Mercury and Methylmercury Concentrations in Largemouth Bass (Micropterus) Tj ETQq0 0 0 Toxicology, 2005, 49, 528-545.	rgBT /Ove 4.1	rlock 10 Tf 5 29
123	Mercury bioaccumulation increases with latitude in a coastal marine fish (Atlantic) Tj ETQq1 1 0.784314 rgBT /Ov	verlock 10 1.4	Tf 50 187 29
124	Marine mercury fate: From sources to seafood consumers. Environmental Research, 2012, 119, 1-2.	7.5	28
125	A modeling study on methylmercury bioaccumulation and its controlling factors. Ecological Modelling, 2008, 218, 267-289.	2.5	27
126	Effects of bottom water oxygen concentrations on mercury distribution and speciation in sediments below the oxygen minimum zone of the Arabian Sea. Marine Chemistry, 2016, 186, 24-32.	2.3	27

#	Article	IF	CITATIONS
127	Spatial and temporal trophic transfer dynamics of mercury and methylmercury into zooplankton and phytoplankton of Long Island Sound. Limnology and Oceanography, 2017, 62, 1122-1138.	3.1	27
128	Rapid Increase in the Lateral Transport of Trace Elements Induced by Soil Erosion in Major Karst Regions in China. Environmental Science & Technology, 2019, 53, 4206-4214.	10.0	27
129	An Examination of the Oxidation of Elemental Mercury in the Presence of Halide Surfaces. Journal of Atmospheric Chemistry, 2004, 48, 107-130.	3.2	24
130	Mercury and metals in South African precipitation. Atmospheric Environment, 2013, 79, 286-298.	4.1	24
131	Exposure of bivalve shellfish to titania nanoparticles under an environmental-spill scenario: Encounter, ingestion and egestion. Journal of the Marine Biological Association of the United Kingdom, 2016, 96, 137-149.	0.8	24
132	Effect of ligands and other metals on the uptake of mercury and methylmercury across the gills and the intestine of the blue crab (Callinectes sapidus). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2002, 131, 185-196.	2.6	23
133	Mercury flux from salt marsh sediments: Insights from a comparison between 224Ra/228Th disequilibrium and core incubation methods. Geochimica Et Cosmochimica Acta, 2018, 222, 569-583.	3.9	23
134	Wet and dry deposition of mercury in Bermuda. Atmospheric Environment, 2014, 87, 249-257.	4.1	20
135	Connecting mercury science to policy: from sources to seafood. Reviews on Environmental Health, 2016, 31, 17-20.	2.4	19
136	The effect of aqueous speciation and cellular ligand binding on the biotransformation and bioavailability of methylmercury in mercury-resistant bacteria. Biodegradation, 2016, 27, 29-36.	3.0	19
137	Methylmercury Bioaccumulation in an Urban Estuary: Delaware River, USA. Estuaries and Coasts, 2017, 40, 1358-1370.	2.2	18
138	Controls on methylmercury accumulation in northern Gulf of Mexico sediments. Estuarine, Coastal and Shelf Science, 2015, 159, 50-59.	2.1	17
139	Traditional Tibetan Medicine Induced High Methylmercury Exposure Level and Environmental Mercury Burden in Tibet, China. Environmental Science & Technology, 2018, 52, 8838-8847.	10.0	17
140	Historic contamination alters mercury sources and cycling in temperate estuaries relative to uncontaminated sites. Water Research, 2021, 190, 116684.	11.3	17
141	Mercury emissions from point sources in South Africa. , 2009, , 113-130.		16
142	Speciation and Distribution of Atmospheric Mercury over the Northern Chesapeake Bay. ACS Symposium Series, 2002, , 223-242.	0.5	15
143	Disturbance impacts on mercury dynamics in northern Gulf of Mexico sediments. Journal of Geophysical Research, 2009, 114, .	3.3	15
144	The precipitation, growth and stability of mercury sulfide nanoparticles formed in the presence of marine dissolved organic matter. Environmental Sciences: Processes and Impacts, 2018, 20, 642-656	3.5	14

#	Article	IF	CITATIONS
145	Patterns in forage fish mercury concentrations across Northeast US estuaries. Environmental Research, 2021, 194, 110629.	7.5	14
146	The effect of thiolate organic compounds on methylmercury accumulation and redistribution in sheepshead minnows, <i>Cyprinodon variegatus</i> . Environmental Toxicology and Chemistry, 2001, 20, 1557-1563.	4.3	13
147	Mercury and methylmercury uptake and trophic transfer from marine diatoms to copepods and field collected zooplankton. Marine Environmental Research, 2021, 170, 105446.	2.5	12
148	Distribution of total mercury and methylated mercury species in Central Arctic Ocean water and ice. Marine Chemistry, 2022, 242, 104105.	2.3	10
149	Century-old mercury pollution: Evaluating the impacts on local fish from the eastern United States. Chemosphere, 2020, 259, 127484.	8.2	9
150	Effects of shear stress and hard clams on seston, microphytobenthos, and nitrogen dynamics in mesocosms with tidal resuspension. Marine Ecology - Progress Series, 2013, 479, 25-45.	1.9	9
151	Air-sea Exchange and Marine Boundary Layer Atmospheric Transformation of Hg and their Importance in the Global Mercury Cycle. , 2005, , 213-239.		7
152	The interaction of mercury and methylmercury with chalcogenide nanoparticles. Environmental Pollution, 2019, 255, 113346.	7.5	7
153	STURM: Resuspension mesocosms with realistic bottom shear stress and water column turbulence for benthic-pelagic coupling studies: Design and applications. Journal of Experimental Marine Biology and Ecology, 2018, 499, 35-50.	1.5	6
154	Geochemistry of Mercury in the Marine Environment. , 2019, , 301-308.		6
155	The Urban Atmosphere: An Important Source of Trace Metals to Nearby Waters?. ACS Symposium Series, 2002, , 203-222.	0.5	5
156	MEASURING SULFIDE ACCUMULATION IN DIFFUSIVE GRADIENTS IN THIN FILMS BY MEANS OF PURGE AND TRAP FOLLOWED BY ION-SELECTIVE ELECTRODE. Environmental Toxicology and Chemistry, 2005, 24, 3043.	4.3	5
157	Comparison of reactive gaseous mercury measured by KCl-coated denuders and cation exchange membranes during the Pacific GEOTRACES GP15 expedition. Atmospheric Environment, 2021, 244, 117973.	4.1	5
158	Spatial coverage and temporal trends of over-water, air-surface exchange, surface and deep sea water mercury measurements. , 2009, , 323-380.		4
159	8th International Estuarine Biogeochemistry Symposium: Introduction. Marine Chemistry, 2006, 102, 1.	2.3	3
160	What works in water supply and sanitation projects in developing countries with EWB-USA. Reviews on Environmental Health, 2016, 31, 85-87.	2.4	3
161	Formalin-preserved zooplankton are not reliable for historical reconstructions of methylmercury bioaccumulation. Science of the Total Environment, 2020, 738, 139803.	8.0	3
162	Abiotic Reduction of Mercury(II) in the Presence of Sulfidic Mineral Suspensions. Frontiers in Environmental Chemistry, 2021, 2, .	1.6	3

#	Article	IF	CITATIONS
163	The Transformation of Inorganic and Methylmercury in the Presence of I-Cysteine Capped CdSe Nanoparticles. Frontiers in Environmental Chemistry, 2021, 2, .	1.6	2
164	Grand Challenge for Frontiers in Environmental Chemistry—Inorganic Pollutants. Frontiers in Environmental Chemistry, 2020, 1, .	1.6	1
165	Mercury and Lead. Issues in Environmental Science and Technology, 2015, , 107-149.	0.4	1
166	The Influence of Varying Algal Biomass On Contaminant Exposure in Benthic-Planktonic Mesocosms: Copper (Ii). Chemistry and Ecology, 1999, 16, 317-340.	1.6	0
167	Reply to Comment on "Traditional Tibetan Medicine Induced High Methylmercury Exposure Level and Environmental Mercury Burden in Tibet, China― Environmental Science & Technology, 2019, 53, 12956-12958.	10.0	Ο
168	Oceanic Fate and Transport of Chemicals. , 2012, , 287-333.		0