Sammy Bedoui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5957404/publications.pdf

Version: 2024-02-01

81839 69214 7,716 86 39 77 citations g-index h-index papers 88 88 88 12090 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Type 1 conventional dendritic cells maintain and guide the differentiation of precursors of exhausted TAcells in distinct cellular niches. Immunity, 2022, 55, 656-670.e8.	6.6	41
2	Intracellular <scp><i>Staphylococcus aureus</i></scp> and host cell death pathways. Cellular Microbiology, 2021, 23, e13317.	1.1	31
3	Ptpn2 and KLRG1 regulate the generation and function of tissue-resident memory CD8+ T cells in skin. Journal of Experimental Medicine, 2021, 218, .	4.2	12
4	Caspase-2 does not play a critical role in cell death induction and bacterial clearance during Salmonella infection. Cell Death and Differentiation, 2021, 28, 3371-3373.	5.0	2
5	CD4+ T cell immunity to Salmonella is transient in the circulation. PLoS Pathogens, 2021, 17, e1010004.	2.1	5
6	IFNÎ 3 receptor down-regulation facilitates <i>Legionella</i> survival in alveolar macrophages. Journal of Leukocyte Biology, 2020, 107, 273-284.	1.5	11
7	Flexible Usage and Interconnectivity of Diverse Cell Death Pathways Protect against Intracellular Infection. Immunity, 2020, 53, 533-547.e7.	6.6	98
8	Emerging connectivity of programmed cell death pathways and its physiological implications. Nature Reviews Molecular Cell Biology, 2020, 21, 678-695.	16.1	465
9	Sympathetic nerves control bacterial clearance. Scientific Reports, 2020, 10, 15009.	1.6	25
10	Nuclear response to divergent mitochondrial DNA genotypes modulates the interferon immune response. PLoS ONE, 2020, 15, e0239804.	1.1	0
11	Nuclear response to divergent mitochondrial DNA genotypes modulates the interferon immune response. , 2020, 15, e0239804.		O
12	Nuclear response to divergent mitochondrial DNA genotypes modulates the interferon immune response. , 2020, 15, e0239804.		0
13	Nuclear response to divergent mitochondrial DNA genotypes modulates the interferon immune response. , 2020, 15, e0239804.		O
14	Nuclear response to divergent mitochondrial DNA genotypes modulates the interferon immune response., 2020, 15, e0239804.		0
15	Microbiota-Derived Short-Chain Fatty Acids Promote the Memory Potential of Antigen-Activated CD8+ T Cells. Immunity, 2019, 51, 285-297.e5.	6.6	378
16	Tissue-resident memory CD8+ T cells promote melanoma–immune equilibrium in skin. Nature, 2019, 565, 366-371.	13.7	266
17	Classical Type 1 Dendritic Cells Dominate Priming of Th1 Responses to Herpes Simplex Virus Type 1 Skin Infection. Journal of Immunology, 2019, 202, 653-663.	0.4	27
18	Tissueâ€resident memory T cells in tissue homeostasis, persistent infection, and cancer surveillance. Immunological Reviews, 2018, 283, 54-76.	2.8	142

#	Article	IF	Citations
19	Effective Priming of Herpes Simplex Virus-Specific CD8 + T Cells In Vivo Does Not Require Infected Dendritic Cells. Journal of Virology, 2018, 92, .	1.5	14
20	STING-mediated type-I interferons contribute to the neuroinflammatory process and detrimental effects following traumatic brain injury. Journal of Neuroinflammation, 2018, 15, 323.	3.1	95
21	Optimal protection against <i>Salmonella</i> i>infection requires noncirculating memory. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10416-10421.	3.3	37
22	CD8+ T Cells Orchestrate pDC-XCR1+ Dendritic Cell Spatial and Functional Cooperativity to Optimize Priming. Immunity, 2017, 46, 205-219.	6.6	278
23	Posttranslational Modification as a Critical Determinant of Cytoplasmic Innate Immune Recognition. Physiological Reviews, 2017, 97, 1165-1209.	13.1	63
24	IFNs Modify the Proteome of Legionella-Containing Vacuoles and Restrict Infection Via IRG1-Derived Itaconic Acid. PLoS Pathogens, 2016, 12, e1005408.	2.1	195
25	<scp>CD</scp> 4 ⁺ Tâ€cell help amplifies innate signals for primary <scp>CD</scp> 8 ⁺ Tâ€cell immunity. Immunological Reviews, 2016, 272, 52-64.	2.8	98
26	Skin CD4+ memory T cells exhibit combined cluster-mediated retention and equilibration with the circulation. Nature Communications, 2016, 7, 11514.	5.8	161
27	Parallels and differences between innate and adaptive lymphocytes. Nature Immunology, 2016, 17, 490-494.	7.0	37
28	A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage. Nature Immunology, 2016, 17, 1300-1311.	7.0	288
29	Skin tumor immunity: Site does matter for antigen presentation by DCs. European Journal of Immunology, 2016, 46, 543-546.	1.6	3
30	German Society for Immunology and Australasian Society for Immunology joint Workshop 3 rd –4 th December 2015 – Meeting report. European Journal of Immunology, 2016, 46, 265-268.	1.6	2
31	T Cell Help Amplifies Innate Signals in CD8 + DCs for Optimal CD8 + T Cell Priming. Cell Reports, 2016, 14, 586-597.	2.9	62
32	Cooperation between Monocyte-Derived Cells and Lymphoid Cells in the Acute Response to a Bacterial Lung Pathogen. PLoS Pathogens, 2016, 12, e1005691.	2.1	37
33	Recirculating and Resident Memory CD8 + T Cells. , 2016, , 344-352.		0
34	NLRP3 inflammasome activation downstream of cytoplasmic LPS recognition by both caspaseâ€4 and caspaseâ€5. European Journal of Immunology, 2015, 45, 2918-2926.	1.6	283
35	Cutting Edge: CD69 Interference with Sphingosine-1-Phosphate Receptor Function Regulates Peripheral T Cell Retention. Journal of Immunology, 2015, 194, 2059-2063.	0.4	398
36	Krýppel-ling of IRF4-Dependent DCs into Two Functionally Distinct DC Subsets. Immunity, 2015, 42, 785-787.	6.6	8

#	Article	IF	CITATIONS
37	Differential use of autophagy by primary dendritic cells specialized in cross-presentation. Autophagy, 2015, 11, 906-917.	4.3	74
38	Multilayered T-cell memory in human skin. Annals of Translational Medicine, 2015, 3, 311.	0.7	0
39	In Vivo IFN- \hat{l}^3 Secretion by NK Cells in Response to Salmonella Typhimurium Requires NLRC4 Inflammasomes. PLoS ONE, 2014, 9, e97418.	1.1	37
40	Distinct APC Subtypes Drive Spatially Segregated CD4+ and CD8+ T-Cell Effector Activity during Skin Infection with HSV-1. PLoS Pathogens, 2014, 10, e1004303.	2.1	75
41	The role of dendritic cells in immunity against primary herpes simplex virus infections. Frontiers in Microbiology, 2014, 5, 533.	1.5	35
42	Helping Themselves: Optimal Virus-Specific CD4 T Cell Responses Require Help via CD4 T Cell Licensing of Dendritic Cells. Journal of Immunology, 2014, 193, 5420-5433.	0.4	9
43	Apoptotic Caspases Suppress mtDNA-Induced STING-Mediated Type I IFN Production. Cell, 2014, 159, 1549-1562.	13.5	698
44	The use of a TLR2 agonistâ€based adjuvant for enhancing effector and memory CD8 Tâ€cell responses. Immunology and Cell Biology, 2014, 92, 377-383.	1.0	28
45	The Closely Related CD103+ Dendritic Cells (DCs) and Lymphoid-Resident CD8+ DCs Differ in Their Inflammatory Functions. PLoS ONE, 2014, 9, e91126.	1.1	30
46	Cellular Requirements for Systemic Control of Salmonella enterica Serovar Typhimurium Infections in Mice. Infection and Immunity, 2014, 82, 4997-5004.	1.0	36
47	Transient Systemic Inflammation Does Not Alter the Induction of Tolerance to Gastric Autoantigens by Migratory Dendritic Cells. Journal of Immunology, 2014, 192, 5023-5030.	0.4	6
48	197. Cytokine, 2014, 70, 75-76.	1.4	0
49	Salmonella vaccines: lessons from the mouse model or bad teaching?. Current Opinion in Microbiology, 2014, 17, 99-105.	2.3	25
50	Intestinal innate immune cells in gut homeostasis and immunosurveillance. Immunology and Cell Biology, 2013, 91, 201-203.	1.0	32
51	Vitamin <scp>A</scp> notches up <scp>CD</scp> 11b ^{hi} <scp>DC</scp> development. European Journal of Immunology, 2013, 43, 1441-1444.	1.6	4
52	Contribution of Thy1 $<$ sup $>+sup>NK cells to protective IFN-\hat{I}^3 production during<i>Salmonellai>Typhimurium infections. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2252-2257.$	3.3	87
53	Indiscriminate Memories during Infection Control. Immunity, 2012, 37, 445-446.	6.6	0
54	NLRC4 inflammasomes in dendritic cells regulate noncognate effector function by memory CD8+ T cells. Nature Immunology, 2012, 13, 162-169.	7.0	150

#	Article	IF	Citations
55	Reactive murine lymph nodes uniquely permit parenchymal access for T cells that enter via the afferent lymphatics. Journal of Pathology, 2012, 226, 806-813.	2.1	12
56	A Local Role for CD103+ Dendritic Cells in Atherosclerosis. Immunity, 2011, 35, 665-667.	6.6	1
57	GMâ€CSF increases crossâ€presentation and CD103 expression by mouse CD8 ⁺ spleen dendritic cells. European Journal of Immunology, 2011, 41, 2585-2595.	1.6	86
58	Interaction between dendritic cells and T cells during peripheral virus infections: a role for antigen presentation beyond lymphoid organs?. Current Opinion in Immunology, 2011, 23, 124-130.	2.4	20
59	Gr-1+ cells, but not neutrophils, limit virus replication and lesion development following flank infection of mice with herpes simplex virus type-1. Virology, 2010, 407, 143-151.	1.1	30
60	Different Bacterial Pathogens, Different Strategies, Yet the Aim Is the Same: Evasion of Intestinal Dendritic Cell Recognition. Journal of Immunology, 2010, 184, 2237-2242.	0.4	48
61	Cutting Edge: Priming of CD8 T Cell Immunity to Herpes Simplex Virus Type 1 Requires Cognate TLR3 Expression InVivo. Journal of Immunology, 2010, 184, 2243-2246.	0.4	76
62	Depletion of Gr-1+, but not Ly6G+, immune cells exacerbates virus replication and disease in an intranasal model of herpes simplex virus type 1 infection. Journal of General Virology, 2010, 91, 2158-2166.	1.3	81
63	Characterization of an Immediate Splenic Precursor of CD8+ Dendritic Cells Capable of Inducing Antiviral T Cell Responses. Journal of Immunology, 2009, 182, 4200-4207.	0.4	86
64	Transience of MHC Class I-restricted antigen presentation after influenza A virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6724-6729.	3.3	15
65	Equivalent stimulation of naive and memory CD8 T cells by DNA vaccination: a dendritic cellâ€dependent process. Immunology and Cell Biology, 2009, 87, 255-259.	1.0	15
66	Selected Toll-like Receptor Ligands and Viruses Promote Helper-Independent Cytotoxic T Cell Priming by Upregulating CD40L on Dendritic Cells. Immunity, 2009, 30, 218-227.	6.6	84
67	Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nature Immunology, 2009, 10, 488-495.	7.0	612
68	Neuropeptide Y receptor-specifically modulates human neutrophil function. Journal of Neuroimmunology, 2008, 195, 88-95.	1.1	44
69	Peripheral but not central leptin treatment increases numbers of circulating NK cells, granulocytes and specific monocyte subpopulations in non-endotoxaemic lean and obese LEW-rats. Regulatory Peptides, 2008, 151, 26-34.	1.9	26
70	Postnatal Life Events Affect the Severity of Asthmatic Airway Inflammation in the Adult Rat. Journal of Immunology, 2008, 180, 3919-3925.	0.4	37
71	Dose-dependent recruitment of CD25+ and CD26+ T cells in a novel F344 rat model of asthma. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L1564-L1571.	1.3	30
72	Putative IKDCs are functionally and developmentally similar to natural killer cells, but not to dendritic cells. Journal of Experimental Medicine, 2007, 204, 2579-2590.	4.2	108

#	Article	IF	CITATIONS
73	A role for neuropeptide Y (NPY) in phagocytosis: Implications for innate and adaptive immunity. Peptides, 2007, 28, 373-376.	1.2	56
74	Minimal activation of memory CD8+ T cell by tissue-derived dendritic cells favors the stimulation of naive CD8+ T cells. Nature Immunology, 2007, 8, 1060-1066.	7.0	129
75	Migratory Dendritic Cells Transfer Antigen to a Lymph Node-Resident Dendritic Cell Population for Efficient CTL Priming. Immunity, 2006, 25, 153-162.	6.6	637
76	CD26 (dipeptidyl-peptidase IV)-dependent recruitment of T cells in a rat asthma model. Clinical and Experimental Immunology, 2005, 139, 17-24.	1.1	62
77	?2-Adrenoceptor-mediated suppression of human intestinal mast cell functions is caused by disruption of filamentous actin dynamics. European Journal of Immunology, 2005, 35, 1124-1132.	1.6	36
78	Unaltered TNF-alpha production by macrophages and monocytes in diet-induced obesity in the rat. Journal of Inflammation, 2005, 2, 2.	1.5	33
79	NPY, NPY receptors and DPPIV in innate immunity and autoimmune disorders. , 2005, , 87-106.		0
80	Reduced tissue immigration of monocytes by neuropeptide Y during endotoxemia is associated with Y2 receptor activation. Journal of Neuroimmunology, 2004, 155, 1-12.	1.1	54
81	More sympathy for autoimmunity with neuropeptide Y?. Trends in Immunology, 2004, 25, 508-512.	2.9	62
82	Relevance of Neuropeptide Y for the neuroimmune crosstalk. Journal of Neuroimmunology, 2003, 134, 1-11.	1.1	130
83	Neuropeptide Y (NPY) Suppresses Experimental Autoimmune Encephalomyelitis: NPY1 Receptor-Specific Inhibition of Autoreactive Th1 Responses In Vivo. Journal of Immunology, 2003, 171, 3451-3458.	0.4	103
84	NPY modulates epinephrine-induced leukocytosis via Y-1 and Y-5 receptor activation in vivo: sympathetic co-transmission during leukocyte mobilization. Journal of Neuroimmunology, 2002, 132, 25-33.	1.1	43
85	Differential effects of neuropeptide Y (NPY) on leukocyte subsets in the blood: mobilization of B-1-like B-lymphocytes and activated monocytes. Journal of Neuroimmunology, 2001, 117, 125-132.	1.1	58
86	Microbial Metabolites in the Maturation and Activation of Dendritic Cells and Their Relevance for Respiratory Immunity. Frontiers in Immunology, 0, 13, .	2.2	5