Keekyoung Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5957253/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D bioprinting for engineering complex tissues. Biotechnology Advances, 2016, 34, 422-434.	6.0	1,240
2	Carbon-Nanotube-Embedded Hydrogel Sheets for Engineering Cardiac Constructs and Bioactuators. ACS Nano, 2013, 7, 2369-2380.	7.3	789
3	A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication, 2015, 7, 045009.	3.7	466
4	Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials, 2012, 33, 9009-9018.	5.7	221
5	Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications. Stem Cells International, 2016, 2016, 1-19.	1.2	221
6	Visible Light Photoinitiation of Cell-Adhesive Gelatin Methacryloyl Hydrogels for Stereolithography 3D Bioprinting. ACS Applied Materials & Interfaces, 2018, 10, 26859-26869.	4.0	197
7	Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces. Acta Biomaterialia, 2019, 96, 149-160.	4.1	139
8	Microfluidics-Assisted Fabrication of Gelatin-Silica Core–Shell Microgels for Injectable Tissue Constructs. Biomacromolecules, 2014, 15, 283-290.	2.6	133
9	Nanowire-Based Biosensors: From Growth to Applications. Micromachines, 2018, 9, 679.	1.4	99
10	Comparative study of gelatin methacrylate hydrogels from different sources for biofabrication applications. Biofabrication, 2017, 9, 044101.	3.7	81
11	An ultrafast hydrogel photocrosslinking method for direct laser bioprinting. RSC Advances, 2016, 6, 21099-21104.	1.7	75
12	Stereolithography 3D Bioprinting Method for Fabrication of Human Corneal Stroma Equivalent. Annals of Biomedical Engineering, 2020, 48, 1955-1970.	1.3	62
13	Stereolithography 3D Bioprinting. Methods in Molecular Biology, 2020, 2140, 93-108.	0.4	61
14	Nanowire-Based Sensors for Biological and Medical Applications. IEEE Transactions on Nanobioscience, 2016, 15, 186-199.	2.2	60
15	Recent trends in gelatin methacryloyl nanocomposite hydrogels for tissue engineering. Journal of Biomedical Materials Research - Part A, 2022, 110, 708-724.	2.1	55
16	Designing Gelatin Methacryloyl (GelMA)â€Based Bioinks for Visible Light Stereolithographic 3D Biofabrication. Macromolecular Bioscience, 2021, 21, e2000317.	2.1	51
17	Rapid and Inexpensive Fabrication of Multi-Depth Microfluidic Device using High-Resolution LCD Stereolithographic 3D Printing. Journal of Manufacturing and Materials Processing, 2019, 3, 26.	1.0	48
18	An integrated microfluidic flow-focusing platform for on-chip fabrication and filtration of cell-laden microgels. Lab on A Chip, 2019, 19, 1621-1632.	3.1	48

KEEKYOUNG KIM

#	Article	IF	CITATIONS
19	A Novel, Wellâ€Resolved Direct Laser Bioprinting System for Rapid Cell Encapsulation and Microwell Fabrication. Advanced Healthcare Materials, 2018, 7, e1701249.	3.9	42
20	Rapid Fabrication of Multilayer Microfluidic Devices Using the Liquid Crystal Display-Based Stereolithography 3D Printing System. 3D Printing and Additive Manufacturing, 2017, 4, 156-164.	1.4	40
21	Microfluidics-based fabrication of cell-laden microgels. Biomicrofluidics, 2020, 14, 021501.	1.2	40
22	Multiscale stress–strain characterization of onion outer epidermal tissue in wet and dry states. American Journal of Botany, 2015, 102, 12-20.	0.8	36
23	Sacrificial layer technique for axial force post assay of immature cardiomyocytes. Biomedical Microdevices, 2013, 15, 171-181.	1.4	35
24	Visible light-based stereolithography bioprinting of cell-adhesive gelatin hydrogels. , 2017, 2017, 1599-1602.		29
25	Tunable metacrylated hyaluronic acid-based hybrid bioinks for stereolithography 3D bioprinting. Biofabrication, 2021, 13, 044109.	3.7	26
26	Experimental and computational study of microfluidic flowâ€focusing generation of gelatin methacrylate hydrogel droplets. Journal of Applied Polymer Science, 2016, 133, .	1.3	24
27	Optimized 3D Bioprinting Technology Based on Machine Learning: A Review of Recent Trends and Advances. Micromachines, 2022, 13, 363.	1.4	23
28	Embryoid body size-mediated differential endodermal and mesodermal differentiation using polyethylene glycol (PEG) microwell array. Macromolecular Research, 2015, 23, 245-255.	1.0	21
29	Rapid fabrication of circular channel microfluidic flowâ€focusing devices for hydrogel droplet generation. Micro and Nano Letters, 2016, 11, 41-45.	0.6	21
30	Polyether ether ketone surface modification with plasma and gelatin for enhancing cell attachment. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 622-629.	1.6	19
31	Highâ€throughput investigation of endothelialâ€toâ€mesenchymal transformation (EndMT) with combinatorial cellular microarrays. Biotechnology and Bioengineering, 2016, 113, 1403-1412.	1.7	16
32	High Throughput Screening of Cell Mechanical Response Using a Stretchable 3D Cellular Microarray Platform. Small, 2020, 16, e2000941.	5.2	16
33	Organ-on-a-Chip Platforms for Drug Screening and Tissue Engineering. Biosystems and Biorobotics, 2016, , 209-233.	0.2	15
34	Biofabrication strategies for engineering heterogeneous artificial tissues. Additive Manufacturing, 2020, 36, 101459.	1.7	15
35	Antibacterial efficiency assessment of polymer-nanoparticle composites using a high-throughput microfluidic platform. Materials Science and Engineering C, 2020, 111, 110754.	3.8	13
36	An automated system for high-throughput generation and optimization of microdroplets. Biomicrofluidics, 2016, 10, 054110.	1.2	12

KEEKYOUNG KIM

#	Article	IF	CITATIONS
37	Spot Identification and Quality Control in Cell-Based Microarrays. ACS Combinatorial Science, 2012, 14, 471-477.	3.8	11
38	Development and in vitro evaluation of photocurable GelMA/PEGDA hybrid hydrogel for corneal stromal cells delivery. Materials Today Communications, 2021, 27, 102459.	0.9	9
39	A kinetic model for predicting imperfections in the bioink photopolymerization process during visible-light stereolithography printing. Additive Manufacturing, 2022, , 102808.	1.7	5
40	The cleanroom-free rapid fabrication of a liquid conductivity sensor for surface water quality monitoring. Microsystem Technologies, 2016, 22, 2273-2278.	1.2	4
41	An optical multi-sensing system for detection of cardiovascular toxicity. Biotechnology Letters, 2014, 36, 1089-1094.	1.1	3
42	Increased sanitization potency of hydrogen peroxide with synergistic O ₃ and intense pulsed light for non-woven polypropylene. RSC Advances, 2021, 11, 23881-23891.	1.7	2
43	High-throughput three-dimensional cellular platforms for screening biophysical microenvironmental signals. , 2021, , 125-152.		1
44	Technologies for Single-Cell Printing and Patterning. , 2022, , 375-395.		0
45	Technologies for Single-Cell Printing and Patterning. , 2020, , 1-21.		0