List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/595715/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A nacre-inspired strong and flame retardant laminated veneer lumber bonded with magnesium oxychloride cement. Wood Material Science and Engineering, 2023, 18, 254-261.	2.3	2
2	Bioinspired mineral–organic strategy for fabricating a high-strength, antibacterial, flame-retardant soy protein bioplastic via internal boron–nitrogen coordination. Chemical Engineering Journal, 2022, 428, 132616.	12.7	37
3	Compression and flexural properties of rigid polyurethane foam composites reinforced with 3D-printed polylactic acid lattice structures. Composite Structures, 2022, 279, 114866.	5.8	19
4	A bio-inspired multifunctional soy protein-based material: From strong underwater adhesion to 3D printing. Chemical Engineering Journal, 2022, 430, 133017.	12.7	26
5	Eco-friendly soy protein isolate-based films strengthened by water-soluble glycerin epoxy resin. Progress in Organic Coatings, 2022, 162, 106566.	3.9	8
6	Multifunctional conductive graphite/cellulosic microfiber-natural rubber composite sponge with ultrasensitive collision-warning and fire-waring. Chemical Engineering Journal, 2022, 431, 134046.	12.7	12
7	Acacia mangium tannin functionalized graphene nanoplatelets produced via ball-milling for sustainable soy protein-based film. Industrial Crops and Products, 2022, 177, 114478.	5.2	10
8	Development of a multifunctional nanocomposite film with record-high ultralow temperature toughness and unprecedented fatigue-resistance. Chemical Engineering Journal, 2022, 432, 134408.	12.7	13
9	Removal of hazardous dyes and waterborne pathogens using a nanoengineered bioadsorbent from hemp – Fabrication, characterization and performance investigation. Surfaces and Interfaces, 2022, 29, 101797.	3.0	8
10	Effect of wood microstructure and hygroscopicity on the drying characteristics of waterborne wood coating. Wood Science and Technology, 2022, 56, 743-758.	3.2	4
11	Preparation of a high bonding performance soybean protein-based adhesive with low crosslinker addition via microwave chemistry. International Journal of Biological Macromolecules, 2022, 208, 45-55.	7.5	33
12	An ultrastrong bioinspired soy protein isolate-based nanocomposite with graphene oxide intercalation. Composites Part B: Engineering, 2022, 236, 109805.	12.0	7
13	A water-resistant and mildewproof soy protein adhesive enhanced by epoxidized xylitol. Industrial Crops and Products, 2022, 180, 114794.	5.2	28
14	Sustainable high-strength macrofibres extracted from natural bamboo. Nature Sustainability, 2022, 5, 235-244.	23.7	113
15	Effects of air-assisted solar drying on poplar lumber drying processes in sub frigid zone regions. Drying Technology, 2022, 40, 3580-3590.	3.1	5
16	Constructing SiO2 nanohybrid to develop a strong soy protein adhesive with excellent flame-retardant and coating ability. Chemical Engineering Journal, 2022, 446, 137065.	12.7	41
17	Bioinspired dual-crosslinking strategy for fabricating soy protein-based adhesives with excellent mechanical strength and antibacterial activity. Composites Part B: Engineering, 2022, 240, 109987.	12.0	46
18	Biomimetic lignin-protein adhesive with dynamic covalent/hydrogen hybrid networks enables high bonding performance and wood-based panel recycling. International Journal of Biological Macromolecules, 2022, 214, 230-240.	7.5	27

#	Article	IF	CITATIONS
19	Preparation of a strong soy protein adhesive with mildew proof, flame-retardant, and electromagnetic shielding properties via constructing nanophase-reinforced organic–inorganic hybrid structure. Chemical Engineering Journal, 2022, 447, 137536.	12.7	31
20	Preparation of a strong and multiple-function soybean flour adhesive via the construction of tannin microspheres with a core–shell structure. Composites Part B: Engineering, 2022, 242, 110114.	12.0	21
21	Hyperbranched catechol biomineralization for preparing super antibacterial and fire-resistant soybean protein adhesives with long-term adhesion. Chemical Engineering Journal, 2022, 449, 137822.	12.7	44
22	Bioinspired super-tough and multifunctional soy protein-based material via a facile approach. Chemical Engineering Journal, 2021, 405, 126700.	12.7	14
23	Sandcastle worm-inspired phytic acid and magnesium oxychloride cement copolymerization for performance enhancement. Journal of Hazardous Materials, 2021, 404, 123992.	12.4	20
24	Effects of Pressure from Highâ€Pressure Homogenization on the Performance of Soybean Flour Basedâ€Adhesive. Macromolecular Materials and Engineering, 2021, 306, 2000458.	3.6	5
25	Improving Bond Performance and Reducing Cross-linker Dosage for Soy Flour Adhesives Inspired by Spider Silk. ACS Sustainable Chemistry and Engineering, 2021, 9, 168-179.	6.7	36
26	Application of intermittent ball milling to enzymatic hydrolysis for efficient conversion of lignocellulosic biomass into glucose. Renewable and Sustainable Energy Reviews, 2021, 136, 110442.	16.4	49
27	A green bio-inspired chelating design for improving the electrical conductivity of flexible biopolymer-based composites. Journal of Cleaner Production, 2021, 285, 125504.	9.3	18
28	Full Bioâ€Based Soy Protein Isolate Film Enhanced by Chicken Feather Keratin. Macromolecular Materials and Engineering, 2021, 306, 2100004.	3.6	17
29	Nacre-Inspired Strong and Multifunctional Soy Protein-Based Nanocomposite Materials for Easy Heat-Dissipative Mobile Phone Shell. Nano Letters, 2021, 21, 3254-3261.	9.1	39
30	Magnesium oxychloride cement reinforced via D-gluconic acid sodium salt for slow-curing, with enhanced compressive strength and water resistance. Construction and Building Materials, 2021, 280, 122487.	7.2	18
31	Constructing a triple network structure to prepare strong, tough, and mildew resistant soy protein adhesive. Composites Part B: Engineering, 2021, 211, 108677.	12.0	70
32	Spider Silk Inspired Robust and Photoluminescent Soybeanâ€Proteinâ€Based Materials. Macromolecular Materials and Engineering, 2021, 306, 2100155.	3.6	2
33	A simple design of mechanically robust, recyclable, and biodegradable composite films with high thermal stability and fluorescent properties. Polymer Testing, 2021, 97, 107162.	4.8	11
34	"Green―Flexible Electronics: Biodegradable and Mechanically Strong Soy Protein-Based Nanocomposite Films for Human Motion Monitoring. ACS Applied Materials & Interfaces, 2021, 13, 37617-37627.	8.0	27
35	Design, Development, and Outlook of Superwettability Membranes in Oil/Water Emulsions Separation. Advanced Materials Interfaces, 2021, 8, 2100799.	3.7	27
36	Bioinspired hyperbranched protein adhesive based on boronic acid-functionalized cellulose nanofibril and water-soluble polyester. Composites Part B: Engineering, 2021, 219, 108943.	12.0	32

#	Article	IF	CITATIONS
37	Design, Development, and Outlook of Superwettability Membranes in Oil/Water Emulsions Separation (Adv. Mater. Interfaces 18/2021). Advanced Materials Interfaces, 2021, 8, 2170102.	3.7	0
38	Microwave induced construction of multiple networks for multifunctional soy protein-based materials. Progress in Organic Coatings, 2021, 158, 106390.	3.9	4
39	Wetting mechanism and interfacial bonding performance of bamboo fiber reinforced epoxy resin composites. Composites Science and Technology, 2021, 213, 108951.	7.8	44
40	Bioinspired interface engineering of soybean meal-based adhesive incorporated with biomineralized cellulose nanofibrils and a functional aminoclay. Chemical Engineering Journal, 2021, 421, 129820.	12.7	57
41	Bioinspired interface design of multifunctional soy protein-based biomaterials with excellent mechanical strength and UV-blocking performance. Composites Part B: Engineering, 2021, 224, 109187.	12.0	27
42	High performance and multifunctional protein-based adhesive produced via phenol-amine chemistry and mineral reinforcement strategy inspired by arthropod cuticles. Chemical Engineering Journal, 2021, 426, 130852.	12.7	19
43	Mesoporous activated carbon as a green adsorbent for the removal of heavy metals and Congo red: Characterization, adsorption kinetics, and isotherm studies. Journal of Contaminant Hydrology, 2021, 243, 103869.	3.3	91
44	Green Synthesis of Silver Nanoparticles Using Cannabis sativa Extracts and Their Anti-Bacterial Activity. Green and Sustainable Chemistry, 2021, 11, 28-38.	1.2	17
45	Optically Transparent Bamboo with High Strength and Low Thermal Conductivity. ACS Applied Materials & Interfaces, 2021, 13, 1662-1669.	8.0	68
46	Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Science, 2021, 374, 465-471.	12.6	137
47	Bioinspired and biomineralized magnesium oxychloride cement with enhanced compressive strength and water resistance. Journal of Hazardous Materials, 2020, 383, 121099.	12.4	53
48	High-pressure CO2 hydrothermal pretreatment of peanut shells for enzymatic hydrolysis conversion into glucose. Chemical Engineering Journal, 2020, 385, 123949.	12.7	60
49	Microwave-Assisted Catalytic Cleavage of C–C Bond in Lignin Models by Bifunctional Pt/CDC-SiC. ACS Sustainable Chemistry and Engineering, 2020, 8, 38-43.	6.7	20
50	Natural fiber-metallic composites with remarkable gradient structures. Materials Today Communications, 2020, 25, 101453.	1.9	1
51	A high-performance soybean meal-based plywood adhesive prepared via an ultrasonic process and using significantly lower amounts of chemical additives. Journal of Cleaner Production, 2020, 274, 123017.	9.3	37
52	Effect of Various Microwave Absorbents on the Microwave-Assisted Lignin Depolymerization Process. ACS Sustainable Chemistry and Engineering, 2020, 8, 16086-16090.	6.7	15
53	Novel 2D Dynamic Elasticity Maps for Inspection of Anisotropic Properties in Fused Deposition Modeling Objects. Polymers, 2020, 12, 1966.	4.5	14
54	Bioinspired Organic–Inorganic Hybrid Magnesium Oxychloride Cement via Chitosan and Tartaric Acid. ACS Sustainable Chemistry and Engineering, 2020, 8, 18841-18852.	6.7	13

#	Article	IF	CITATIONS
55	Multiple Hydrogen Bonding Enables Strong, Tough, and Recyclable Soy Protein Films. ACS Sustainable Chemistry and Engineering, 2020, 8, 7680-7689.	6.7	28
56	Effect of lignin on the self-bonding of a natural fiber material in a hydrothermal environment: Lignin structure and characterization. International Journal of Biological Macromolecules, 2020, 158, 1135-1140.	7.5	9
57	Phytic acid-assisted fabrication for soybean meal/nanofiber composite adhesive via bioinspired chelation reinforcement strategy. Journal of Hazardous Materials, 2020, 399, 123064.	12.4	66
58	Assembly of graphene oxide into the hyperbranched frameworks for the fabrication of flexible protein-based films with enhanced conductivities. Composites Part B: Engineering, 2020, 196, 108110.	12.0	29
59	Polysaccharideâ€Based Adhesives: A Highâ€Performance Bioâ€Adhesive Using Hyperbranched Aminated Soybean Polysaccharide and Bioâ€Based Epoxide (Adv. Mater. Interfaces 9/2020). Advanced Materials Interfaces, 2020, 7, 2070048.	3.7	2
60	A Highâ€Performance Bioâ€Adhesive Using Hyperbranched Aminated Soybean Polysaccharide and Bioâ€Based Epoxide. Advanced Materials Interfaces, 2020, 7, 2000148.	3.7	24
61	A One-Pot Synthesis and Characterization of Antibacterial Silver Nanoparticle–Cellulose Film. Polymers, 2020, 12, 440.	4.5	23
62	Marine sponge spicules-inspired magnesium oxychloride cement with both enhanced water resistance and compressive strength via incorporating acid-activated palygorskite. Applied Clay Science, 2020, 196, 105748.	5.2	10
63	Soy protein adhesive with bio-based epoxidized daidzein for high strength and mildew resistance. Chemical Engineering Journal, 2020, 390, 124622.	12.7	107
64	High efficiency pyrolysis of used cigarette filters for ester-rich bio-oil through microwave-assisted heating. Journal of Cleaner Production, 2020, 257, 120596.	9.3	26
65	Environmentally Benign Wood Modifications: A Review. ACS Sustainable Chemistry and Engineering, 2020, 8, 3532-3540.	6.7	64
66	Development and evaluation of zinc oxide-blended kenaf fiber biocomposite for automotive applications. Materials Today Communications, 2020, 24, 101008.	1.9	27
67	Multiple crosslinking strategy to achieve high bonding strength and antibacterial properties of double-network soy adhesive. Journal of Cleaner Production, 2020, 254, 120143.	9.3	65
68	Borate chemistry inspired by cell walls converts soy protein into high-strength, antibacterial, flame-retardant adhesive. Green Chemistry, 2020, 22, 1319-1328.	9.0	118
69	Preparation of a moderate viscosity, high performance and adequately-stabilized soy protein-based adhesive via recombination of protein molecules. Journal of Cleaner Production, 2020, 255, 120303.	9.3	67
70	Langasite-based surface acoustic wave resonator for acetone vapor sensing. Smart Materials and Structures, 2020, 29, 015039.	3.5	11
71	Soybean Meal-Based Wood Adhesive Enhanced by Phenol Hydroxymethylated Tannin Oligomer for Exterior Use. Polymers, 2020, 12, 758.	4.5	16
72	A Tough and Mildew-Proof Soybean-Based Adhesive Inspired by Mussel and Algae. Polymers, 2020, 12, 756.	4.5	20

#	Article	IF	CITATIONS
73	Bio-inspired co-deposition strategy of aramid fibers to improve performance of soy protein isolate-based adhesive. Industrial Crops and Products, 2020, 150, 112424.	5.2	58
74	Self-support wood-derived carbon/polyaniline composite for high-performance supercapacitor electrodes. Bulletin of Materials Science, 2020, 43, 1.	1.7	9
75	High temperature CO2 sensing and its cross-sensitivity towards H2 and CO gas using calcium doped ZnO thin film coated langasite SAW sensor. Sensors and Actuators B: Chemical, 2019, 301, 126958.	7.8	71
76	A Tough, Water-Resistant, High Bond Strength Adhesive Derived from Soybean Meal and Flexible Hyper-Branched Aminated Starch. Polymers, 2019, 11, 1352.	4.5	12
77	CO ₂ Sensing Behavior of Calcium-Doped ZnO Thin Film: A Study To Address the Cross-Sensitivity of CO ₂ in H ₂ and CO Environment. Langmuir, 2019, 35, 10267-10275.	3.5	27
78	Bioinspired design by gecko structure and mussel chemistry for bio-based adhesive system through incorporating natural fibers. Journal of Cleaner Production, 2019, 236, 117591.	9.3	58
79	Thiol-branched graphene oxide and polydopamine-induced nanofibrillated cellulose to strengthen protein-based nanocomposite films. Cellulose, 2019, 26, 7223-7236.	4.9	18
80	Reinforcement of Polylactic Acid for Fused Deposition Modeling Process with Nano Particles Treated Bamboo Powder. Polymers, 2019, 11, 1146.	4.5	21
81	Comparative life-cycle assessment of water supply pipes made from bamboo vs. polyvinyl chloride. Journal of Cleaner Production, 2019, 240, 118172.	9.3	25
82	Processing high-performance woody materials by means of vacuum-assisted resin infusion technology. Journal of Cleaner Production, 2019, 241, 118340.	9.3	46
83	A Bio-Hygromorph Fabricated with Fish Swim Bladder Hydrogel and Wood Flour-Filled Polylactic Acid Scaffold by 3D Printing. Materials, 2019, 12, 2896.	2.9	14
84	Highâ€Temperature Gas Sensors for Harsh Environment Applications: A Review. Clean - Soil, Air, Water, 2019, 47, 1800491.	1.1	39
85	Tough, strong, and biodegradable composite film with excellent UV barrier performance comprising soy protein isolate, hyperbranched polyester, and cardanol derivative. Green Chemistry, 2019, 21, 3651-3665.	9.0	71
86	Microwave-assisted formic acid extraction for high-purity cellulose production. Cellulose, 2019, 26, 5913-5924.	4.9	16
87	Mechanical property enhancement of self-bonded natural fiber material via controlling cell wall plasticity and structure. Materials and Design, 2019, 172, 107763.	7.0	25
88	The three-dimensional heterostructure synthesis of ZnO/cellulosic fibers and its application for rubber composites. Composites Science and Technology, 2019, 177, 10-17.	7.8	44
89	Facile Fabrication of Self-Healable and Antibacterial Soy Protein-Based Films with High Mechanical Strength. ACS Applied Materials & Comparison (2019, 11, 16107-16116).	8.0	60
90	Thermal and flammable properties of bamboo pulp fiber/high-density polyethylene composites: Influence of preparation technology, nano calcium carbonate and fiber content. Renewable Energy, 2019, 134, 436-445.	8.9	29

#	Article	IF	CITATIONS
91	Self-bonded natural fiber product with high hydrophobic and EMI shielding performance via magnetron sputtering Cu film. Applied Surface Science, 2019, 475, 947-952.	6.1	33
92	Flammability and mechanical properties of composites fabricated with CaCO3-filled pine flakes and Phenol Formaldehyde resin. Composites Part B: Engineering, 2019, 167, 1-6.	12.0	33
93	Development of natural fiber-reinforced composite with comparable mechanical properties and reduced energy consumption and environmental impacts for replacing automotive glass-fiber sheet molding compound. Journal of Cleaner Production, 2018, 184, 92-100.	9.3	135
94	The effect of delignification on the properties of cellulosic fiber material. Holzforschung, 2018, 72, 443-449.	1.9	23
95	Effect of light-delignification on mechanical, hydrophobic, and thermal properties of high-strength molded fiber materials. Scientific Reports, 2018, 8, 955.	3.3	22
96	Catalytic pyrolysis of larch sawdust for phenol-rich bio-oil using different catalysts. Renewable Energy, 2018, 121, 146-152.	8.9	53
97	Controlling pore size of activated carbon through self-activation process for removing contaminants of different molecular sizes. Journal of Colloid and Interface Science, 2018, 518, 41-47.	9.4	30
98	Water-resistant hemp fiber-reinforced composites: In-situ surface protection by polyethylene film. Industrial Crops and Products, 2018, 112, 210-216.	5.2	32
99	Sodium Hydroxide-Free Soy Protein Isolate-Based Films Crosslinked by Pentaerythritol Glycidyl Ether. Polymers, 2018, 10, 1300.	4.5	9
100	Effect of thermal treatment with water, H2SO4 and NaOH aqueous solution on color, cell wall and chemical structure of poplar wood. Scientific Reports, 2018, 8, 17735.	3.3	30
101	Largeâ€Size Transparent Wood for Energyâ€Saving Building Applications. ChemSusChem, 2018, 11, 4086-4093.	6.8	80
102	Preparation and properties of pulp fibers treated with zinc oxide nanoparticles by <i>in situ</i> chemosynthesis. Holzforschung, 2018, 72, 923-931.	1.9	8
103	Comparative environmental life cycle assessment of fiber reinforced cement panel between kenaf and glass fibers. Journal of Cleaner Production, 2018, 200, 196-204.	9.3	42
104	Research Progress on Formaldehyde Emission of Wood-Based Panel. International Journal of Polymer Science, 2018, 2018, 1-8.	2.7	25
105	In-Situ Chemosynthesis of ZnO Nanoparticles to Endow Wood with Antibacterial and UV-Resistance Properties. Journal of Materials Science and Technology, 2017, 33, 266-270.	10.7	48
106	Natural fiber and aluminum sheet hybrid composites for high electromagnetic interference shielding performance. Composites Part B: Engineering, 2017, 114, 121-127.	12.0	73
107	CaCO3 in situ treated bamboo pulp fiber reinforced composites obtained by vacuum-assisted resin infusion. Wood Science and Technology, 2017, 51, 571-584.	3.2	4
108	Effect of laminated structure design on the mechanical properties of bamboo-wood hybrid laminated veneer lumber. European Journal of Wood and Wood Products, 2017, 75, 439-448.	2.9	21

#	Article	IF	CITATIONS
109	Adding nickel formate in alkali lignin to increase contents of alkylphenols and aromatics during fast pyrolysis. Bioresource Technology, 2017, 227, 1-6.	9.6	31
110	Development and Application of Wood Flour-Filled Polylactic Acid Composite Filament for 3D Printing. Materials, 2017, 10, 339.	2.9	205
111	Fabrication of Wood-Rubber Composites Using Rubber Compound as a Bonding Agent Instead of Adhesives. Materials, 2016, 9, 469.	2.9	7
112	Effects of Carbonization Temperature and Component Ratio on Electromagnetic Interference Shielding Effectiveness of Woodceramics. Materials, 2016, 9, 540.	2.9	25
113	Scalable Fabrication of Natural-Fiber Reinforced Composites with Electromagnetic Interference Shielding Properties by Incorporating Powdered Activated Carbon. Materials, 2016, 9, 10.	2.9	36
114	The bending properties of bamboo bundle laminated veneer lumber (BLVL) double beams. Construction and Building Materials, 2016, 119, 145-151.	7.2	33
115	Pine Wood Extracted Activated Carbon through Selfâ€Activation Process for Highâ€Performance Lithiumâ€Ion Battery. ChemistrySelect, 2016, 1, 4000-4007.	1.5	16
116	Laminated structure design of wood—Bamboo hybrid laminated composite using finite element simulations. Journal of Reinforced Plastics and Composites, 2016, 35, 1661-1670.	3.1	7
117	Hybrid boron nitride-natural fiber composites for enhanced thermal conductivity. Scientific Reports, 2016, 6, 34726.	3.3	55
118	Property enhancement of soy protein isolate-based films by introducing POSS. International Journal of Biological Macromolecules, 2016, 82, 168-173.	7.5	54
119	Property enhancement of kenaf fiber reinforced composites by in situ aluminum hydroxide impregnation. Industrial Crops and Products, 2016, 79, 131-136.	5.2	38
120	Soy protein isolate-based films reinforced by surface modified cellulose nanocrystal. Industrial Crops and Products, 2016, 80, 207-213.	5.2	161
121	Comparison of density and selected microscopic characteristics of stem and branch wood of two commercial trees in Ghana. Wood Science and Technology, 2016, 50, 91-104.	3.2	7
122	High pressure-assisted magnesium carbonate impregnated natural fiber-reinforced composites. Industrial Crops and Products, 2016, 86, 16-22.	5.2	26
123	Dual-functional natural-fiber reinforced composites by incorporating magnetite. Composites Part B: Engineering, 2016, 93, 221-228.	12.0	26
124	Improvement of water resistance, dimensional stability, and mechanical properties of poplar wood by rosin impregnation. European Journal of Wood and Wood Products, 2016, 74, 177-184.	2.9	63
125	Natural fiber composites with EMI shielding function fabricated using VARTM and Cu film magnetron sputtering. Applied Surface Science, 2016, 362, 335-340.	6.1	57
126	Self-activation for activated carbon from biomass: theory and parameters. Green Chemistry, 2016, 18, 2063-2071.	9.0	87

#	Article	IF	CITATIONS
127	The effect of PF/PVAC weight ratio and ambient temperature on moisture absorption performance of bambooâ€bundle laminated veneer lumber. Polymer Composites, 2016, 37, 955-962.	4.6	15
128	Characterization of bio-oils and bio-chars obtained from the catalytic pyrolysis of alkali lignin with metal chlorides. Fuel Processing Technology, 2015, 138, 605-611.	7.2	45
129	Property enhancement of kenaf fiber composites by means of vacuum-assisted resin transfer molding (VARTM). Holzforschung, 2015, 69, 307-312.	1.9	37
130	Enhancement of mechanical properties of composites made of calcium carbonate modified bamboo fibers and polypropylene. Holzforschung, 2015, 69, 215-221.	1.9	24
131	Enhancement of mechanical and thermal properties of Poplar through the treatment of glyoxal-urea/nano-SiO ₂ . RSC Advances, 2015, 5, 54148-54155.	3.6	31
132	Phase transitions of carbon-encapsulated iron oxide nanoparticles during the carbonization of cellulose at various pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 2015, 115, 1-6.	5.5	21
133	Vacuum-assisted resin infusion (VARI) and hot pressing for CaCO3 nanoparticle treated kenaf fiber reinforced composites. Composites Part B: Engineering, 2015, 78, 138-143.	12.0	65
134	Electromagnetic shielding properties of iron oxide impregnated kenaf bast fiberboard. Composites Part B: Engineering, 2015, 78, 266-271.	12.0	39
135	Increasing inorganic nanoparticle impregnation efficiency by external pressure for natural fibers. Industrial Crops and Products, 2015, 69, 395-399.	5.2	23
136	Three-dimensional carbon nanotubes for high capacity lithium-ion batteries. Journal of Power Sources, 2015, 299, 465-471.	7.8	40
137	Soy protein isolate-based films cross-linked by epoxidized soybean oil. RSC Advances, 2015, 5, 82765-82771.	3.6	45
138	Effect of Impregnated Inorganic Nanoparticles on the Properties of the Kenaf Bast Fibers. Fibers, 2014, 2, 242-254.	4.0	23
139	Impact properties of bamboo bundle laminated veneer lumber by preprocessing densification technology. Journal of Wood Science, 2014, 60, 421-427.	1.9	23
140	Optimum processing parameters for wood-bamboo hybrid composite sleepers. Journal of Reinforced Plastics and Composites, 2014, 33, 2010-2018.	3.1	13
141	Quality improvement of pyrolysis oil from waste rubber by adding sawdust. Waste Management, 2014, 34, 2603-2610.	7.4	26
142	Experimental analysis on strength and failure modes of wood beam-column connections. Frontiers of Structural and Civil Engineering, 2014, 8, 260-269.	2.9	2
143	Impact of the Combination of Densification and Thermal Modification on Dimensional Stability and Hardness of Poplar Lumber. Drying Technology, 2013, 31, 1107-1113.	3.1	22
144	Mechanical properties of amorphous cellulose using molecular dynamics simulations with a reactive force field. International Journal of Modelling, Identification and Control, 2013, 18, 211.	0.2	20

#	Article	IF	CITATIONS
145	Acceleration of Moisture Migration in Larch Wood Through Microwave Pre-Treatments. Drying Technology, 2013, 31, 666-671.	3.1	12
146	Kenaf fiber/soy protein based biocomposites modified with poly(carboxylic acid) resin. Journal of Applied Polymer Science, 2013, 128, 1213-1218.	2.6	20
147	Bamboo Bundle Corrugated Laminated Composites (BCLC). Part I. Three-Dimensional Stability in Response to Corrugating Effect. Journal of Adhesion, 2013, 89, 225-238.	3.0	13
148	Versatile and biomass synthesis of iron-based nanoparticles supported on carbon matrix with high iron content and tunable reactivity. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	6
149	Soybean mealâ€based adhesive enhanced by MUF resin. Journal of Applied Polymer Science, 2012, 125, 3676-3681.	2.6	61
150	A chemical process for preparing cellulosic fibers hierarchically from kenaf bast fibers. BioResources, 2011, 6, 879-890.	1.0	56
151	Kenaf Bast Fibers—Part II: Inorganic Nanoparticle Impregnation for Polymer Composites. International Journal of Polymer Science, 2011, 2011, 1-7.	2.7	15
152	Nanoclay filled soyâ€based polyurethane foam. Journal of Applied Polymer Science, 2011, 119, 1857-1863.	2.6	35
153	Flakeboard Bonded with Polymeric Diphenylmethane Diisocyanate/Bio-Oil Adhesive Systems. Forest Products Journal, 2011, 61, 240-245.	0.4	15
154	Properties of unidirectional kenaf fiber–polyolefin laminates. Polymer Composites, 2010, 31, 1067-1074.	4.6	33
155	Rheological Behavior of Larch Timber during Conventional Drying. Drying Technology, 2009, 27, 1041-1050.	3.1	18
156	Effect of the addition of wood flours on the properties of rigid polyurethane foam. Journal of Applied Polymer Science, 2009, 113, 2902-2909.	2.6	31
157	Effect of thermal treatment of wood lumbers on their adhesive bond strength and durability. Journal of Adhesion Science and Technology, 2007, 21, 745-754.	2.6	32
158	Diffusion model based on Fick's second law for the moisture absorption process in wood fiber-based composites: is it suitable or not?. Wood Science and Technology, 2007, 41, 645-658.	3.2	49
159	Hygroscopic thickness swelling rate of compression molded wood fiberboard and wood fiberboard and wood fiber/polymer composites. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1276-1285.	7.6	85
160	A new model to determine contact angles on swelling polymer particles by the column wicking method. Journal of Adhesion Science and Technology, 2000, 14, 301-314.	2.6	25