Harjinder Kaur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5956886/publications.pdf

Version: 2024-02-01

687363 677142 23 610 13 22 citations h-index g-index papers 24 24 24 967 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Selective oxidation of cyclohexene to adipic acid over CuNPs supported on PLA/TiO2. Catalysis Communications, 2022, 168, 106460.	3.3	3
2	Graphitic Carbon Nitride Decorated with Cu2O Nanoparticles for the Visible Light Activated Synthesis of Ynones, Aminoindolizines, and Pyrrolo [1, 2-a] Quinoline. ACS Applied Nano Materials, 2020, 3, 1191-1202.	5.0	19
3	Supported heterogeneous nanocatalysts in sustainable, selective and eco-friendly epoxidation of olefins. Green Chemistry, 2020, 22, 5902-5936.	9.0	75
4	Ultrasonicationâ€Assisted Synthesis of 3â€Substituted Indoles in Water Using Polymer Grafted ZnO Nanoparticles as Ecoâ€Friendly Catalyst. ChemistrySelect, 2019, 4, 245-249.	1.5	8
5	Synthesis and characterization of nanosized polylactic acid/TiO2 particle brushes by azeotropic dehydration polycondensation of lactic acid. Journal of Polymer Research, 2018, 25, 1.	2.4	8
6	Self-catalyzed surface grafting of Mn3O4 nanoparticles with polylactide and its magnetic properties. Journal of Polymer Research, 2018, 25, 1.	2.4	3
7	Microwaveâ€assisted facile synthesis of propargylamine library by robust nitro functionalized crossâ€inked polystyrene resin supported <scp>Cu NPs</scp> . Journal of Physical Organic Chemistry, 2018, 31, e3749.	1.9	9
8	Microwave assisted hydrogenation of olefins by Pd NPs@polystyrene resin using a gas addition kit: a robust and sustainable protocol. New Journal of Chemistry, 2018, 42, 18935-18941.	2.8	8
9	A PLA–TiO ₂ particle brush as a novel support for CuNPs: a catalyst for the fast sequential reduction and N-arylation of nitroarenes. New Journal of Chemistry, 2017, 41, 5347-5354.	2.8	17
10	Sustainable Protocol for Benzylic -CH ₂ Oxidation with Dioxygen to Phenones Using AuNPs@ Resin Beads. ChemistrySelect, 2017, 2, 10112-10117.	1.5	9
11	Poly (Lactic Acid) Grafting of TiO ₂ Nanoparticles: A Shift in Dye Degradation Performance of TiO ₂ from UV to Solar Light. ChemistrySelect, 2017, 2, 6901-6908.	1.5	14
12	Alloying of AuNPs with palladium: A promising tool for tuning of selectivity for epoxide in oxidation of styrene using molecular oxygen. Applied Catalysis A: General, 2017, 546, 136-148.	4.3	36
13	Au NPs@ polystyrene resin for mild and selective aerobic oxidation of 1,4 dioxane to 1,4 dioxan-2-ol. Catalysis Communications, 2017, 90, 56-59.	3.3	13
14	Polymer Resins as Nanoreactors for the Synthesis of Nanoparticles and Their Catalytic Application in C-C Coupling. , 2017 , , $123-151$.		3
15	Supported palladium nanoparticles: A general sustainable catalyst for microwave enhanced carbon-carbon coupling reactions. Journal of Molecular Catalysis A, 2016, 424, 171-180.	4.8	25
16	Nitro resin supported copper nanoparticles: An effective heterogeneous catalyst for C N cross coupling and oxidative C C homocoupling. Journal of Molecular Catalysis A, 2016, 423, 77-84.	4.8	28
17	Selective oxidation of alcohols by supported gold nanoparticles: recent advances. RSC Advances, 2016, 6, 28688-28727.	3.6	113
18	Gold nanoparticles supported on dendrimer@resin for the efficient oxidation of styrene using elemental oxygen. RSC Advances, 2015, 5, 42935-42941.	3.6	26

#	Article	IF	CITATIONS
19	Supported Gold Nanoparticle Catalyzed Cross-coupling of Alkoxysilanes and Aryl Halides. Current Catalysis, 2015, 4, 224-230.	0.5	8
20	Resin-trapped gold nanoparticles: An efficient catalyst for reduction of nitro compounds and Suzuki-Miyaura coupling. Journal of Molecular Catalysis A, 2014, 381, 70-76.	4.8	111
21	A study on ZnO nanoparticles catalyzed ring opening polymerization of L-lactide. Journal of Polymer Research, 2014, 21, 1.	2.4	19
22	Macroporous resin impregnated palladium nanoparticles: Catalyst for a microwave-assisted green Hiyama reaction. Journal of Molecular Catalysis A, 2012, 359, 69-73.	4.8	24
23	Resin encapsulated palladium nanoparticles: An efficient and robust catalyst for microwave enhanced Suzuki–Miyaura coupling. Catalysis Communications, 2011, 12, 1384-1388.	3.3	31