Jochen BaÃler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5956780/publications.pdf Version: 2024-02-01

ΙΟCHEN ΒΛΑΫιερ

#	Article	IF	CITATIONS
1	90S Pre-Ribosomes Include the 35S Pre-rRNA, the U3 snoRNP, and 40S Subunit Processing Factors but Predominantly Lack 60S Synthesis Factors. Molecular Cell, 2002, 10, 105-115.	4.5	427
2	Driving ribosome assembly. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 673-683.	1.9	411
3	60S pre-ribosome formation viewed from assembly in the nucleolus until export to the cytoplasm. EMBO Journal, 2002, 21, 5539-5547.	3.5	307
4	Identification of a 60S Preribosomal Particle that Is Closely Linked to Nuclear Export. Molecular Cell, 2001, 8, 517-529.	4.5	289
5	Eukaryotic Ribosome Assembly. Annual Review of Biochemistry, 2019, 88, 281-306.	5.0	270
6	Biogenesis of cytosolic ribosomes requires the essential iron–sulphur protein Rli1p and mitochondria. EMBO Journal, 2005, 24, 589-598.	3.5	226
7	Binding of the Mex67p/Mtr2p Heterodimer to Fxfg, Glfg, and Fg Repeat Nucleoporins Is Essential for Nuclear mRNA Export. Journal of Cell Biology, 2000, 150, 695-706.	2.3	200
8	The Exosome Is Recruited to RNA Substrates through Specific Adaptor Proteins. Cell, 2015, 162, 1029-1038.	13.5	170
9	A Puzzle of Life: Crafting Ribosomal Subunits. Trends in Biochemical Sciences, 2017, 42, 640-654.	3.7	159
10	Membrane curvature induced by Arf1-GTP is essential for vesicle formation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11731-11736.	3.3	146
11	Nuclear Export of Ribosomal 60S Subunits by the General mRNA Export Receptor Mex67-Mtr2. Molecular Cell, 2007, 26, 51-62.	4.5	142
12	Mechanochemical Removal of Ribosome Biogenesis Factors from Nascent 60S Ribosomal Subunits. Cell, 2009, 138, 911-922.	13.5	141
13	The AAA-ATPase Rea1 Drives Removal of Biogenesis Factors during Multiple Stages of 60S Ribosome Assembly. Molecular Cell, 2010, 38, 712-721.	4.5	114
14	A Noc Complex Specifically Involved in the Formation and Nuclear Export of Ribosomal 40 S Subunits. Journal of Biological Chemistry, 2003, 278, 4072-4081.	1.6	110
15	Arx1 Functions as an Unorthodox Nuclear Export Receptor for the 60S Preribosomal Subunit. Molecular Cell, 2007, 27, 767-779.	4.5	104
16	Architecture of the Rix1–Rea1 checkpoint machinery during pre-60S-ribosome remodeling. Nature Structural and Molecular Biology, 2016, 23, 37-44.	3.6	104
17	The power of AAA-ATPases on the road of pre-60S ribosome maturation — Molecular machines that strip pre-ribosomal particles. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 92-100.	1.9	79
18	Structural basis for assembly and function of the Nup82 complex in the nuclear pore scaffold. Journal of Cell Biology, 2015, 208, 283-297.	2.3	64

Jochen Baßler

#	Article	IF	CITATIONS
19	Rrp5p, Noc1p and Noc2p form a protein module which is part of early large ribosomal subunit precursors in S. cerevisiae. Nucleic Acids Research, 2013, 41, 1191-1210.	6.5	61
20	An integrated approach for genome annotation of the eukaryotic thermophile Chaetomium thermophilum. Nucleic Acids Research, 2014, 42, 13525-13533.	6.5	55
21	The NUG1 GTPase Reveals an N-terminal RNA-binding Domain That Is Essential for Association with 60 S Pre-ribosomal Particles. Journal of Biological Chemistry, 2006, 281, 24737-24744.	1.6	52
22	Thermophile 90S Pre-ribosome Structures Reveal the Reverse Order of Co-transcriptional 18S rRNA Subdomain Integration. Molecular Cell, 2019, 75, 1256-1269.e7.	4.5	48
23	A network of assembly factors is involved in remodeling rRNA elements during preribosome maturation. Journal of Cell Biology, 2014, 207, 481-498.	2.3	44
24	The Conserved Bud20 Zinc Finger Protein Is a New Component of the Ribosomal 60S Subunit Export Machinery. Molecular and Cellular Biology, 2012, 32, 4898-4912.	1.1	42
25	Interdependent action of KH domain proteins Krr1 and Dim2 drive the 40S platform assembly. Nature Communications, 2017, 8, 2213.	5.8	38
26	Interaction network of the ribosome assembly machinery from a eukaryotic thermophile. Protein Science, 2017, 26, 327-342.	3.1	30
27	Assembly Kinetics of Vimentin Tetramers to Unit-Length Filaments: A Stopped-Flow Study. Biophysical Journal, 2018, 114, 2408-2418.	0.2	29
28	Nucleoporin Nup155 is part of the p53 network in liver cancer. Nature Communications, 2019, 10, 2147.	5.8	29
29	Combining APR-246 and HDAC-Inhibitors: A Novel Targeted Treatment Option for Neuroblastoma. Cancers, 2021, 13, 4476.	1.7	8
30	Mutational Analysis of the Nsa2 N-Terminus Reveals Its Essential Role in Ribosomal 60S Subunit Assembly. International Journal of Molecular Sciences, 2020, 21, 9108.	1.8	5