Paolo Ciambelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5956301/publications.pdf

Version: 2024-02-01

63 3,293 36 57
papers citations h-index g-index

65 65 4182 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Nano-TiO2 Coating Layers with Improved Anticorrosive Properties by Aerosol Flame Synthesis and Thermophoretic Deposition on Aluminium Surfaces. Materials, 2021, 14, 2918.	2.9	5
2	Modelling and numerical simulation of pedestrian flow evacuation from a multi-storey historical building in the event of fire applying safety engineering tools. Journal of Cultural Heritage, 2020, 41, 188-199.	3.3	22
3	Effects of Graphene Nanoplatelets and Multiwall Carbon Nanotubes on the Structure and Mechanical Properties of Poly(lactic acid) Composites: A Comparative Study. Applied Sciences (Switzerland), 2019, 9, 469.	2.5	90
4	Computational analysis of fire and people evacuation for different positions of burning vehicles in a road tunnel with emergency exits. Cogent Engineering, 2018, 5, 1530834.	2.2	11
5	Conductive Adhesive Based on Mussel-Inspired Graphene Decoration with Silver Nanoparticles. Journal of Nanoscience and Nanotechnology, 2018, 18, 1176-1185.	0.9	10
6	Visible light driven mineralization of spiramycin over photostructured N-doped TiO 2 on up conversion phosphors. Journal of Environmental Sciences, 2017, 54, 268-276.	6.1	9
7	Photocatalytic Removal of NO on Sulphated TiO2 in a Photocatalytic Fluidized Bed Reactor. Advanced Science Letters, 2017, 23, 5886-5888.	0.2	0
8	Silver Decorated Graphene-Polyvinyl Alcohol Hybrid Hydrogel as Catalyst for Benzonitrile Conversion. Advanced Science Letters, 2017, 23, 5980-5983.	0.2	1
9	Photocatalytic removal of patent blue V dye on Au-TiO 2 and Pt-TiO 2 catalysts. Applied Catalysis B: Environmental, 2016, 188, 134-146.	20.2	130
10	Preliminary investigation of polystyrene/MoS2-Oleylamine polymer composite for potential application as low-dielectric material in microelectronics. AIP Conference Proceedings, 2015, , .	0.4	5
11	Process intensification in the removal of organic pollutants from wastewater using innovative photocatalysts obtained coupling Zinc Sulfide based phosphors with nitrogen doped semiconductors. Journal of Cleaner Production, 2015, 100, 208-211.	9.3	47
12	Graphene-based structural adhesive to enhance adhesion performance. RSC Advances, 2015, 5, 27874-27886.	3.6	67
13	Photocatalytic properties of TiO2-functionalized tiles: influence of ceramic substrate. Research on Chemical Intermediates, 2015, 41, 7995-8007.	2.7	7
14	Nanosheets of MoS ₂ â€oleylamine as hybrid filler for selfâ€lubricating polymer composites: Thermal, tribological, and mechanical properties. Polymer Composites, 2015, 36, 1124-1134.	4.6	45
15	Formation of Cellulose Acetate–Graphene Oxide Nanocomposites by Supercritical CO2 Assisted Phase Inversion. Industrial & Engineering Chemistry Research, 2015, 54, 8147-8156.	3.7	38
16	Catalytic DPF microwave assisted active regeneration. Fuel, 2015, 140, 50-61.	6.4	89
17	Polystyrene/MoS2@oleylamine nanocomposites., 2014,,.		4
18	Oil Lubricant Tribological Behaviour Improvement Through Dispersion of Few Layer Graphene Oxide. Journal of Nanoscience and Nanotechnology, 2014, 14, 4960-4968.	0.9	54

#	Article	IF	CITATIONS
19	Influence of the catalyst-nanotube spacing on the synthesis of polymer-functionalized multiwalled carbon nanotubes by "grafting from―approach. Journal of Polymer Research, 2014, 21, 1.	2.4	6
20	Heterogeneous photocatalytic oxidation of methyl ethyl ketone under UV-A light in an LED-fluidized bed reactor. Catalysis Today, 2014, 230, 79-84.	4.4	43
21	Development and characterization of graphene-enhanced thermal conductive adhesives. , 2014, , .		4
22	Influence of the Photoreactor Configuration and of Different Light Sources in the Photocatalytic Treatment of Highly Polluted Wastewater. International Journal of Chemical Reactor Engineering, 2014, 12, 63-75.	1.1	39
23	Nâ€doped <scp>TiO₂</scp> /sâ€ <scp>PS</scp> aerogels for photocatalytic degradation of organic dyes in wastewater under visible light irradiation. Journal of Chemical Technology and Biotechnology, 2014, 89, 1175-1181.	3.2	89
24	CeO2-supported Pt/Ni catalyst for the renewable and clean H2 production via ethanol steam reforming. Applied Catalysis B: Environmental, 2014, 145, 73-84.	20.2	123
25	Functionalization of Ceramic Tiles with N-doped TiO2 and Their Photocatalytic Function Under UV or Visible Light Irradiation. Journal of Advanced Oxidation Technologies, 2014, 17, .	0.5	1
26	Development and characterization of graphene-enhanced thermal conductive adhesives. , 2014, , .		0
27	Simulation of fire scenarios due to different vehicle types with and without traffic in a bi-directional road tunnel. Tunnelling and Underground Space Technology, 2013, 37, 22-36.	6.2	41
28	Methane auto-thermal reforming on honeycomb and foam structured catalysts: The role of the support on system performances. Catalysis Today, 2013, 216, 30-37.	4.4	18
29	Study of the catalyst load for a microwave susceptible catalytic DPF. Catalysis Today, 2013, 216, 185-193.	4.4	35
30	Evaluation of N719 amount in TiO2 films for DSSC by thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 2013, 111, 453-458.	3.6	10
31	Performances analysis of a compact kW-scale ATR reactor for distributed H2 production. Clean Technologies and Environmental Policy, 2013, 15, 63-71.	4.1	7
32	New †chimie douce†approach to the synthesis of hybrid nanosheets of MoS < sub>2 < /sub> on CNT and their anti-friction and anti-wear properties. Nanotechnology, 2013, 24, 125601.	2.6	51
33	On the activity of bimetallic catalysts for ethanol steam reforming. International Journal of Hydrogen Energy, 2013, 38, 6633-6645.	7.1	60
34	Screening of catalysts for H2S abatement from biogas to feed molten carbonate fuel cells. International Journal of Hydrogen Energy, 2013, 38, 328-335.	7.1	33
35	Investigation of the Deactivation Phenomena Occurring in the Cyclohexane Photocatalytic Oxidative Dehydrogenation on MoOx/TiO2 through Gas Phase and in situ DRIFTS Analyses. Catalysts, 2013, 3, 978-997.	3 . 5	13
36	Graphene Oxide Nanosheets as Effective Friction Modifier for Oil Lubricant: Materials, Methods, and Tribological Results. ISRN Tribology, 2013, 2013, 1-9.	0.4	101

#	Article	IF	CITATIONS
37	Photocatalytic Degradation of Organic Dyes under Visible Light on N-Doped <mml:math id="M1" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>TiO</mml:mtext></mml:mrow><mml:mtext>2<td>nml:mtext:</td><td>> </td></mml:mtext></mml:msub></mml:mrow></mml:math>	nml:mtext:	>
38	Oxidative Dehydrogenation of Ethanol over Au/TiO2 Photocatalysts. Journal of Advanced Oxidation Technologies, 2012, 15, .	0.5	3
39	Numerical simulation of different HGV fire scenarios in curved bi-directional road tunnels and safety evaluation. Tunnelling and Underground Space Technology, 2012, 31, 33-50.	6.2	61
40	A Novel Wet Chemistry Approach for the Synthesis of Hybrid 2D Free-Floating Single or Multilayer Nanosheets of MS ₂ @oleylamine (Mâ•Mo, W). Chemistry of Materials, 2011, 23, 3879-3885.	6.7	293
41	Thermal Radiation Modelling in Tunnel Fires. Advances in Applied Mathematics and Mechanics, 2011, 3, 327-353.	1.2	2
42	Structured catalysts for photo-Fenton oxidation of acetic acid. Catalysis Today, 2011, 161, 255-259.	4.4	57
43	Comparison of ceramic honeycomb monolith and foam as Ni catalyst carrier for methane autothermal reforming. Catalysis Today, 2010, 155, 92-100.	4.4	68
44	Fluidized-Bed Reactor for the Intensification of Gas-Phase Photocatalytic Oxidative Dehydrogenation of Cyclohexane. Industrial & Engineering Chemistry Research, 2010, 49, 10279-10286.	3.7	39
45	Synthesis of Ordered Layers of Monodisperse CoFe ₂ O ₄ Nanoparticles for Catalyzed Growth of Carbon Nanotubes on Silicon Substrate. Chemistry of Materials, 2009, 21, 4851-4858.	6.7	31
46	Influence of the polymer structure and nanotube concentration on the conductivity and rheological properties of polyethylene/CNT composites. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2440-2445.	2.7	141
47	Reaction mechanism of cyclohexane selective photo-oxidation to benzene on molybdena/titania catalysts. Applied Catalysis A: General, 2008, 349, 140-147.	4.3	38
48	Carbon nanotube induced structural and physical property transitions of syndiotactic polypropylene. Nanotechnology, 2007, 18, 275703.	2.6	39
49	Influence of the electrical field applied during thermal cycling on the conductivity of LLDPE/CNT composites. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 66-71.	2.7	26
50	Incorporation of carbon nanotubes into polyethylene by high energy ball milling: Morphology and physical properties. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 597-606.	2.1	127
51	In situ sulphated CuOx/ZrO2 and CuOx/sulphated-ZrO2 as catalysts for the reduction of NOx with NH3 in the presence of excess O2. Applied Catalysis B: Environmental, 2005, 60, 83-92.	20.2	34
52	Polymorphism and Thermal Behaviour of Syndiotactic Poly(propylene)/Carbon Nanotube Composites. Macromolecular Rapid Communications, 2004, 25, 1963-1967.	3.9	51
53	The catalytic activity of CuSO4/ZrO2 for the selective catalytic reduction of NOx with NH3 in the presence of excess O2. Applied Catalysis B: Environmental, 2002, 36, 217-230.	20.2	57
54	Shape and Volume of Cavities in Thermoplastic Molecular Sieves Based on Syndiotactic Polystyrene. Chemistry of Materials, 2001, 13, 1506-1511.	6.7	174

#	Article	IF	Citations
55	AMnO3 (A=La, Nd, Sm) and Sm1â^'xSrxMnO3 perovskites as combustion catalysts: structural, redox and catalytic properties. Applied Catalysis B: Environmental, 2000, 24, 243-253.	20.2	169
56	Oxidative dehydrogenation of propane over vanadium and niobium oxides supported catalysts. Applied Catalysis A: General, 1999, 184, 291-301.	4.3	56
57	The catalytic activity of CuOx/ZrO2 for the abatement of NO with propene or ammonia in the presence of O2. Applied Catalysis B: Environmental, 1999, 21, 141-150.	20.2	63
58	Perovskite-Type Oxides. Journal of Solid State Chemistry, 1999, 146, 176-183.	2.9	166
59	Effect of Oxidation on the Microstructure of Carbon Blacks. Energy & Energy	5.1	47
60	Catalytic combustion of carbon particulate. Catalysis Today, 1996, 27, 99-106.	4.4	69
61	Physico-chemical study of selective catalytic reduction vanadia-titania catalysts prepared by the equilibrium adsorption method. Applied Catalysis B: Environmental, 1995, 7, 1-18.	20.2	33
62	Vanadium oxide catalysts supported on laser-synthesized titania powders: Characterization and catalytic activity in the selective reduction of nitric oxide. Applied Catalysis B: Environmental, 1992, 1, 61-77.	20.2	38
63	Conductive Luminescent Material Based on Polymerâ€Functionalized Graphene Composite. Physica Status Solidi (A) Applications and Materials Science, 0, , 2100492.	1.8	0