Yusuf YaÄži

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/595622/publications.pdf

Version: 2024-02-01

573 papers 27,575 citations

80 h-index 131 g-index

585 all docs 585 docs citations

585 times ranked 11055 citing authors

#	Article	IF	CITATIONS
1	Photoinitiated Polymerization: Advances, Challenges, and Opportunities. Macromolecules, 2010, 43, 6245-6260.	4.8	1,111
2	Polybenzoxazinesâ€"New high performance thermosetting resins: Synthesis and properties. Progress in Polymer Science, 2007, 32, 1344-1391.	24.7	1,023
3	Photoinduced Electron Transfer Reactions for Macromolecular Syntheses. Chemical Reviews, 2016, 116, 10212-10275.	47.7	677
4	Photomediated controlled radical polymerization. Progress in Polymer Science, 2016, 62, 73-125.	24.7	537
5	Recent advancement on polybenzoxazine—A newly developed high performance thermoset. Journal of Polymer Science Part A, 2009, 47, 5565-5576.	2.3	433
6	Lightâ€Induced Click Reactions. Angewandte Chemie - International Edition, 2013, 52, 5930-5938.	13.8	394
7	Telechelic polymers by living and controlled/living polymerization methods. Progress in Polymer Science, 2011, 36, 455-567.	24.7	361
8	Mechanistic transformations involving living and controlled/living polymerization methods. Progress in Polymer Science, 2006, 31, 1133-1170.	24.7	324
9	Anthraceneâ^'Maleimide-Based Dielsâ^'Alder "Click Chemistry―as a Novel Route to Graft Copolymers. Macromolecules, 2006, 39, 5330-5336.	4.8	271
10	Externally stimulated initiator systems for cationic polymerization. Progress in Polymer Science, 1998, 23, 1485-1538.	24.7	258
11	Photoinduced Controlled Radical Polymerization. Macromolecular Rapid Communications, 2011, 32, 58-62.	3.9	237
12	Influence of Type of Initiation on Thiol–Ene "Click―Chemistry. Macromolecular Chemistry and Physics, 2010, 211, 103-110.	2.2	218
13	Polybenzoxazineâ€based composites as highâ€performance materials. Polymer International, 2011, 60, 167-177.	3.1	211
14	Shining a light on an adaptable photoinitiator: advances in photopolymerizations initiated by thioxanthones. Polymer Chemistry, 2015, 6, 6595-6615.	3.9	182
15	2-Mercaptothioxanthone as a Novel Photoinitiator for Free Radical Polymerization. Macromolecules, 2003, 36, 2649-2653.	4.8	181
16	One-Component Bimolecular Photoinitiating Systems, 2. Macromolecular Rapid Communications, 2003, 24, 718-723.	3.9	171
17	Photoinduced Controlled Radical Polymerization in Methanol. Macromolecular Chemistry and Physics, 2010, 211, 2271-2275.	2.2	168
18	In Situ Synthesis of Silverâ^'Epoxy Nanocomposites by Photoinduced Electron Transfer and Cationic Polymerization Processes. Macromolecules, 2007, 40, 8827-8829.	4.8	156

#	Article	IF	CITATIONS
19	Thermally Curable Polystyrene via Click Chemistry. Macromolecules, 2007, 40, 4724-4727.	4.8	154
20	Thioxanthoneâ^'Anthracene:Â A New Photoinitiator for Free Radical Polymerization in the Presence of Oxygen. Macromolecules, 2007, 40, 4138-4141.	4.8	153
21	Synthesis, characterization, and properties of new thermally curable polyetheresters containing benzoxazine moieties in the main chain. Journal of Polymer Science Part A, 2008, 46, 414-420.	2.3	153
22	Visible Lightâ€Induced Atom Transfer Radical Polymerization. Macromolecular Chemistry and Physics, 2012, 213, 1391-1396.	2.2	153
23	Sunlight induced atom transfer radical polymerization by using dimanganese decacarbonyl. Polymer Chemistry, 2014, 5, 600-606.	3.9	152
24	Photoinduced Free Radical Promoted Copper(I)-Catalyzed Click Chemistry for Macromolecular Syntheses. Macromolecules, 2012, 45, 56-61.	4.8	149
25	Synthesis, characterization, and thermally activated curing of oligosiloxanes containing benzoxazine moieties in the main chain. Journal of Polymer Science Part A, 2009, 47, 804-811.	2.3	148
26	Photoinitiated atom transfer radical polymerization: Current status and future perspectives. Journal of Polymer Science Part A, 2014, 52, 2878-2888.	2.3	148
27	Visible Light Initiated Free Radical Promoted Cationic Polymerization Using Acylgermane Based Photoinitiator in the Presence of Onium Salts. Macromolecules, 2008, 41, 6714-6718.	4.8	143
28	Light-induced copper(I)-catalyzed click chemistry. Tetrahedron Letters, 2010, 51, 6945-6947.	1.4	143
29	Nearâ€Infrared Sensitized Photoinduced Atomâ€Transfer Radical Polymerization (ATRP) with a Copper(II) Catalyst Concentration in the ppm Range. Angewandte Chemie - International Edition, 2018, 57, 7898-7902.	13.8	140
30	Thermally curable benzoxazine monomer with a photodimerizable coumarin group. Journal of Polymer Science Part A, 2007, 45, 1670-1676.	2.3	136
31	Photochemical and thermal cationic polymerizations promoted by free radical initiators. Polymer, 1978, 19, 1219-1222.	3.8	134
32	Mechanistic Study of Photoinitiated Free Radical Polymerization Using Thioxanthone Thioacetic Acid as One-Component Type II Photoinitiator. Macromolecules, 2005, 38, 4133-4138.	4.8	134
33	Studies on Photoinduced ATRP in the Presence of Photoinitiator. Macromolecular Chemistry and Physics, 2011, 212, 2036-2042.	2.2	133
34	Combining Elemental Sulfur with Polybenzoxazines via Inverse Vulcanization. Macromolecules, 2016, 49, 767-773.	4.8	132
35	Thioxanthoneâ^'Fluorenes as Visible Light Photoinitiators for Free Radical Polymerization. Macromolecules, 2010, 43, 4520-4526.	4.8	131
36	Thermally curable polyvinylchloride via click chemistry. Journal of Polymer Science Part A, 2008, 46, 3512-3518.	2.3	126

#	Article	IF	Citations
37	Synthesis and Characterization of Polymeric Thioxanthone Photoinitatiors via Double Click Reactions. Macromolecules, 2008, 41, 2401-2405.	4.8	123
38	Thermally Curable Acetylene-Containing Main-Chain Benzoxazine Polymers via Sonogashira Coupling Reaction. Macromolecules, 2011, 44, 1801-1807.	4.8	123
39	Mesoporous Graphitic Carbon Nitride as a Heterogeneous Visible Light Photoinitiator for Radical Polymerization. ACS Macro Letters, 2012, 1, 546-549.	4.8	122
40	Free radical promoted cationic polymerization by using bisacylphosphine oxide photoinitiators: substituent effect on the reactivity of phosphinoyl radicals. Polymer, 2003, 44, 7389-7396.	3.8	120
41	Photoinduced Atom Transfer Radical Polymerization Using Semiconductor Nanoparticles. Macromolecular Rapid Communications, 2014, 35, 454-459.	3.9	120
42	LED and visible light-induced metal free ATRP using reducible dyes in the presence of amines. Polymer Chemistry, 2016, 7, 6094-6098.	3.9	117
43	Benzoxazine-Based Thermosets with Autonomous Self-Healing Ability. Macromolecules, 2015, 48, 1329-1334.	4.8	116
44	N-alkoxy-pyridinium and N-alkoxy-quinolinium salts as initiators for cationic photopolymerizations. Journal of Polymer Science Part A, 1992, 30, 1987-1991.	2.3	114
45	Synthesis and characterization of fluid 1,3â€benzoxazine monomers and their thermally activated curing. Journal of Polymer Science Part A, 2009, 47, 6955-6961.	2.3	113
46	Photoinitiated Metal-Free Controlled/Living Radical Polymerization Using Polynuclear Aromatic Hydrocarbons. Macromolecules, 2016, 49, 7785-7792.	4.8	113
47	A visible light photochemical route to silver–epoxy nanocomposites by simultaneous polymerization–reduction approach. Polymer, 2008, 49, 5195-5198.	3.8	112
48	Recent advances in the preparation of functionalized polysulfones. Polymer International, 2013, 62, 991-1007.	3.1	112
49	Photoinitiated ATRP in Inverse Microemulsion. Macromolecules, 2013, 46, 9537-9543.	4.8	112
50	Photochemically Mediated Atom Transfer Radical Polymerization Using Polymeric Semiconductor Mesoporous Graphitic Carbon Nitride. Macromolecular Chemistry and Physics, 2014, 215, 675-681.	2.2	111
51	Conventional Type II photoinitiators as activators for photoinduced metal-free atom transfer radical polymerization. Polymer Chemistry, 2017, 8, 1972-1977.	3.9	110
52	Microporous Thioxanthone Polymers as Heterogeneous Photoinitiators for Visible Light Induced Free Radical and Cationic Polymerizations. Macromolecules, 2014, 47, 4607-4614.	4.8	109
53	Synthesis and Characterization of Macrophotoinitiators of Poly($\hat{l}\mu$ -caprolactone) and Their Use in Block Copolymerization. Macromolecules, 2002, 35, 8265-8270.	4.8	107
54	Polytetrahydrofuran/Clay Nanocomposites by In Situ Polymerization and "Click―Chemistry Processes. Macromolecules, 2008, 41, 6035-6040.	4.8	105

#	Article	IF	CITATIONS
55	Externally stimulated click reactions for macromolecular syntheses. Progress in Polymer Science, 2016, 52, 19-78.	24.7	103
56	Synthesis and Characterization ofl±,ï‰-Telechelic Polymers by Atom Transfer Radical Polymerization and Coupling Processes. Macromolecular Chemistry and Physics, 2003, 204, 1771-1783.	2.2	101
57	Highly efficient dandelion-like near-infrared light photoinitiator for free radical and thiol-ene photopolymerizations. Nature Communications, 2019, 10, 3560.	12.8	99
58	Living Cationic Polymerization of Vinyl Ethers through a Photoinduced Radical Oxidation/Addition/Deactivation Sequence. Angewandte Chemie - International Edition, 2017, 56, 519-523.	13.8	97
59	Mechanism of Photoinduced Step Polymerization of Thiophene by Onium Salts:  Reactions of Phenyliodinium and Diphenylsulfinium Radical Cations with Thiophene. Macromolecules, 2007, 40, 4481-4485.	4.8	96
60	Mechanistic and kinetic studies on the photoinitiated polymerization of tetrahydrofuran. Journal of Polymer Science Part A, 1988, 26, 1911-1918.	2.3	95
61	Thermally curable main-chain benzoxazine prepolymers via polycondensation route. Reactive and Functional Polymers, 2013, 73, 346-359.	4.1	95
62	Photoinitiated cationic polymerization of monofunctional benzoxazine. Journal of Polymer Science Part A, 2003, 41, 3320-3328.	2.3	94
63	Thioxanthone-ethylcarbazole as a soluble visible light photoinitiator for free radical and free radical promoted cationic polymerizations. Polymer Chemistry, 2011, 2, 2557.	3.9	93
64	Synthesis and Characterization of One-Component Polymeric Photoinitiator by Simultaneous Double Click Reactions and Its Use in Photoinduced Free Radical Polymerization. Macromolecules, 2009, 42, 6098-6106.	4.8	91
65	Polypeptide Functional Surface for the Aptamer Immobilization: Electrochemical Cocaine Biosensing. Analytical Chemistry, 2016, 88, 4161-4167.	6.5	91
66	A Novel Visible Light Initiatiating System for Cationic Polymerization. Macromolecules, 1999, 32, 6367-6370.	4.8	90
67	Benzoxazine containing polyester thermosets with improved adhesion and flexibility. Journal of Polymer Science Part A, 2010, 48, 4279-4284.	2.3	90
68	A new photoiniferter/RAFT agent for ambient temperature rapid and wellâ€controlled radical polymerization. Journal of Polymer Science Part A, 2008, 46, 3387-3395.	2.3	89
69	Light-induced synthesis of block and graft copolymers. Progress in Polymer Science, 1990, 15, 551-601.	24.7	88
70	Self-Curable Benzoxazine Functional Polybutadienes Synthesized by Click Chemistry. Designed Monomers and Polymers, 2009, 12, 167-176.	1.6	87
71	Visible light induced free radical promoted cationic polymerization using thioxanthone derivatives. Journal of Polymer Science Part A, 2011, 49, 1591-1596.	2.3	87
72	Clay-PMMA Nanocomposites by Photoinitiated Radical Polymerization Using Intercalated Phenacyl Pyridinium Salt Initiators. Macromolecular Chemistry and Physics, 2006, 207, 820-826.	2.2	86

#	Article	IF	CITATIONS
73	Thioxanthone–carbazole as a visible light photoinitiator for free radical polymerization. Journal of Polymer Science Part A, 2010, 48, 5120-5125.	2.3	86
74	Initiation of cationic polymerization via oxidation of free radicals using pyridinium salts. Polymer, 1991, 32, 2289-2293.	3.8	85
75	Photosensitized cationic polymerization using N-ethoxy-2-methylpyridinium hexafluorophosphate. Polymer, 1993, 34, 1130-1133.	3.8	85
76	Photoinitiated Free Radical Polymerization Using Benzoxazines as Hydrogen Donors. Macromolecular Rapid Communications, 2006, 27, 1539-1544.	3.9	85
77	In situ synthesis of gold-cross-linked poly(ethylene glycol) nanocomposites by photoinduced electron transfer and free radical polymerization processes. Chemical Communications, 2008, , 2771.	4.1	85
78	Polysiloxaneâ€containing benzoxazine moieties in the main chain. Journal of Polymer Science Part A, 2010, 48, 5156-5162.	2.3	85
79	Synthesis and Characterization of Thermally Curable Benzoxazine-Functionalized Polystyrene Macromonomers. Macromolecular Rapid Communications, 2005, 26, 819-824.	3.9	84
80	Photoinduced Polymerization of Thiophene Using Iodonium Salt. Macromolecular Chemistry and Physics, 2005, 206, 1178-1182.	2.2	82
81	Synthesis and Characterization of Goldâ^'Epoxy Nanocomposites by Visible Light Photoinduced Electron Transfer and Cationic Polymerization Processes. Macromolecules, 2008, 41, 7268-7270.	4.8	82
82	Inverse vulcanization of bismaleimide and divinylbenzene by elemental sulfur for lithium sulfur batteries. European Polymer Journal, 2016, 80, 70-77.	5.4	82
83	Block copolymers by combination of radical and promoted cationic polymerization routes. Macromolecules, 1991, 24, 4620-4623.	4.8	81
84	Sugar overcomes oxygen inhibition in photoinitiated free radical polymerization. Journal of Polymer Science Part A, 2013, 51, 1685-1689.	2.3	81
85	Photoinduced metal-free atom transfer radical polymerizations: state-of-the-art, mechanistic aspects and applications. Polymer Chemistry, 2018, 9, 1757-1762.	3.9	80
86	Charge-transfer complexes of pyridinium ions and methyl- and methoxy-substituted benzenes as photoinitiators for the cationic polymerization of cyclohexene oxide and related compounds. Polymer, 1994, 35, 2428-2431.	3.8	79
87	Photoacid Generation by Stepwise Two-Photon Absorption:  Photoinitiated Cationic Polymerization of Cyclohexene Oxide by Using Benzodioxinone in the Presence of Iodonium Salt. Macromolecules, 2008, 41, 295-297.	4.8	79
88	Recycling and Self-Healing of Polybenzoxazines with Dynamic Sulfide Linkages. Scientific Reports, 2017, 7, 5207.	3.3	79
89	Photoinduced free radical promoted cationic polymerization 40 years after its discovery. Polymer Chemistry, 2020, 11, 1111-1121.	3.9	79
90	Visible light photoinitiating systems by charge transfer complexes: Photochemistry without dyes. Progress in Polymer Science, 2020, 107, 101277.	24.7	77

#	Article	IF	Citations
91	Synthesis, characterization and properties of naphthoxazine-functional poly(propyleneoxide)s. European Polymer Journal, 2006, 42, 3006-3014.	5.4	76
92	Photochemically and thermally induced radical promoted cationic polymerization using an allylic sulfonium salt. Polymer, 1995, 36, 3093-3098.	3.8	75
93	Highly Conjugated Thiophene Derivatives as New Visible Light Sensitive Photoinitiators for Cationic Polymerization. Macromolecules, 2010, 43, 101-106.	4.8	75
94	Light-induced step-growth polymerization. Progress in Polymer Science, 2020, 100, 101178.	24.7	75
95	Counteranion Sensitization Approach to Photoinitiated Free Radical Polymerization. Macromolecules, 2012, 45, 2219-2224.	4.8	73
96	Polybenzoxazine Precursors As Self-Healing Agents for Polysulfones. Macromolecules, 2013, 46, 8773-8778.	4.8	73
97	Antibacterial Acrylamide Hydrogels Containing Silver Nanoparticles by Simultaneous Photoinduced Free Radical Polymerization and Electron Transfer Processes. Macromolecular Chemistry and Physics, 2009, 210, 1867-1875.	2.2	72
98	Mechanism of Photoinitiated Free Radical Polymerization by Thioxanthoneâ [^] Anthracene in the Presence of Air. Macromolecules, 2011, 44, 2531-2535.	4.8	72
99	A Dithienothiophene Derivative as a Long-Wavelength Photosensitizer for Onium Salt Photoinitiated Cationic Polymerization. Macromolecules, 2008, 41, 3468-3471.	4.8	70
100	Self-healing of poly(propylene oxide)-polybenzoxazine thermosets by photoinduced coumarine dimerization. Journal of Polymer Science Part A, 2014, 52, 2911-2918.	2.3	70
101	Synthesis of Hyperbranched Polymers by Photoinduced Metal-Free ATRP. Macromolecules, 2017, 50, 9115-9120.	4.8	70
102	N-alkoxy pyridinium ion terminated polytetrahydrofurans. Synthesis and their use in photoinitiated block copolymerization. Polymer, 1994, 35, 4443-4448.	3.8	69
103	Hyperbranched Polymers by Visible Light Induced Self-Condensing Vinyl Polymerization and Their Modifications. Macromolecules, 2013, 46, 6751-6757.	4.8	69
104	The Next 100 Years of Polymer Science. Macromolecular Chemistry and Physics, 2020, 221, 2000216.	2.2	69
105	Block copolymers of thiophene-capped poly(methyl methacrylate) with pyrrole. Journal of Polymer Science Part A, 1999, 37, 4218-4225.	2.3	68
106	Synthesis and characterization of maleimide (Co)polymers with pendant benzoxazine groups by photoinduced radical polymerization and their thermal curing. Journal of Polymer Science Part A, 2007, 45, 2774-2786.	2.3	68
107	Synthesis and characterization of nanomagnetite thermosets based on benzoxazines. Journal of Polymer Science Part A, 2008, 46, 6780-6788.	2.3	68
108	Synthesis of ABC type miktoarm star copolymers by triple click chemistry. Polymer Chemistry, 2011, 2, 2865.	3.9	68

#	Article	IF	CITATIONS
109	Reduction of Cu(II) by photochemically generated phosphonyl radicals to generate Cu(I) as catalyst for atom transfer radical polymerization and azide-alkyne cycloaddition click reactions. Polymer, 2014, 55, 3468-3474.	3.8	68
110	Photoinduced Metal-Free Atom Transfer Radical Polymerization Using Highly Conjugated Thienothiophene Derivatives. Macromolecules, 2017, 50, 6903-6910.	4.8	68
111	New aspects on the photoinitiated free radical promoted cationic polymerization. Makromolekulare Chemie Macromolecular Symposia, 1992, 60, 133-143.	0.6	67
112	In situ Synthesis of Polymer/Clay Nanocomposites by Living and Controlled/Living Polymerization. Macromolecular Chemistry and Physics, 2010, 211, 279-285.	2.2	67
113	Photoinduced reverse atom transfer radical polymerization of methyl methacrylate using camphorquinone/benzhydrol system. Polymer International, 2014, 63, 902-907.	3.1	67
114	Photoinduced Electron Transfer Reactions of Highly Conjugated Thiophenes for Initiation of Cationic Polymerization and Conjugated Polymer Formation. Macromolecules, 2012, 45, 7829-7834.	4.8	65
115	Poly(ethylene glycol)â€thioxanthone prepared by Diels–Alder click chemistry as oneâ€component polymeric photoinitiator for aqueous freeâ€radical polymerization. Journal of Polymer Science Part A, 2010, 48, 2109-2114.	2.3	64
116	Photoinduced Controlled/Living Polymerizations. Angewandte Chemie - International Edition, 2022, 61,	13.8	64
117	The active role of excited states of phenothiazines in photoinduced metal free atom transfer radical polymerization: singlet or triplet excited states?. Polymer Chemistry, 2016, 7, 6039-6043.	3.9	63
118	Phenolic Naphthoxazines as Curing Promoters for Benzoxazines. Macromolecules, 2018, 51, 1688-1695.	4.8	63
119	Lightâ€induced cationic polymerization. Makromolekulare Chemie Macromolecular Symposia, 1988, 13-14, 161-174.	0.6	62
120	Pyrene functional poly(vinyl alcohol) by "click―chemistry. Journal of Polymer Science Part A, 2009, 47, 1317-1326.	2.3	62
121	Block copolymer synthesis in one shot: concurrent metal-free ATRP and ROP processes under sunlight. Polymer Chemistry, 2017, 8, 2899-2903.	3.9	62
122	Benzoxazine-Based Thermoset with Autonomous Self-Healing and Shape Recovery. Macromolecules, 2018, 51, 10095-10103.	4.8	62
123	New polyphenylene-based macromolecular architectures by using well defined macromonomers synthesized via controlled polymerization methods. Progress in Polymer Science, 2004, 29, 387-399.	24.7	61
124	Polymeric Side Chain Thioxanthone Photoinitiator for Free Radical Polymerization. Polymer Bulletin, 2006, 57, 51-56.	3.3	61
125	ABC type miktoarm star copolymers through combination of controlled polymerization techniques with thiolâ€ene and azideâ€alkyne click reactions. Journal of Polymer Science Part A, 2011, 49, 2417-2422.	2.3	60
126	Polybenzoxazine: A Powerful Tool for Removal of Mercury Salts from Water. Chemistry - A European Journal, 2014, 20, 10953-10958.	3.3	60

#	Article	IF	CITATIONS
127	Poly(vinyl alcohol)-Thioxanthone as One-Component Type II Photoinitiator for Free Radical Polymerization in Organic and Aqueous Media. Macromolecular Rapid Communications, 2015, 36, 923-928.	3.9	60
128	Nanostructured Amphiphilic Star-Hyperbranched Block Copolymers for Drug Delivery. Langmuir, 2015, 31, 4542-4551.	3 . 5	60
129	A novel benzoxazine monomer with methacrylate functionality and its thermally curable (co)polymers. Polymer Bulletin, 2011, 66, 165-174.	3.3	59
130	Synthesis and characterization of sulfone containing main chain oligobenzoxazine precursors. Journal of Polymer Science Part A, 2011, 49, 2445-2450.	2.3	59
131	Modification of polysulfones by click chemistry: Amphiphilic graft copolymers and their protein adsorption and cell adhesion properties. Journal of Polymer Science Part A, 2011, 49, 110-117.	2.3	58
132	Thermally curable fluorinated main chain benzoxazine polyethers via Ullmann coupling. Polymer Chemistry, 2013, 4, 2106.	3.9	58
133	One-Pot Photo-Induced Sequential CuAAC and Thiol–Ene Click Strategy for Bioactive Macromolecular Synthesis. Macromolecules, 2014, 47, 3608-3613.	4.8	58
134	Photoinduced Step-Growth Polymerization of $\langle i \rangle N \langle i \rangle$ -Ethylcarbazole. Journal of the American Chemical Society, 2018, 140, 12728-12731.	13.7	58
135	Synthesis, characterization and thermally activated curing of polysulfones with benzoxazine end groups. Polymer, 2011, 52, 1504-1509.	3.8	56
136	Sequential photodecomposition of bisacylgermane type photoinitiator: Synthesis of block copolymers by combination of free radical promoted cationic and free radical polymerization mechanisms. Journal of Polymer Science Part A, 2009, 47, 4793-4799.	2.3	55
137	Visible Light-Induced Grafting from Polyolefins. Macromolecules, 2013, 46, 6395-6401.	4.8	55
138	Poly(cyclohexene oxide)/clay nanocomposites by photoinitiated cationic polymerization via activated monomer mechanism. Journal of Polymer Science Part A, 2009, 47, 5328-5335.	2.3	54
139	Visible Light-Induced Cationic Polymerization Using Fullerenes. ACS Macro Letters, 2012, 1, 1212-1215.	4.8	54
140	Block copolymers with crystalline and side-chain liquid crystalline blocks. Die Makromolekulare Chemie Rapid Communications, 1993, 14, 185-193.	1.1	53
141	Synthesis of polybenzoxazine/clay nanocomposites by <i>in situ</i> thermal ringâ€opening polymerization using intercalated monomer. Journal of Polymer Science Part A, 2011, 49, 4213-4220.	2.3	53
142	Mobile Phone Sensing of Cocaine in a Lateral Flow Assay Combined with a Biomimetic Material. Analytical Chemistry, 2017, 89, 9629-9632.	6.5	53
143	Main-chain benzoxazine precursor block copolymers. Polymer Chemistry, 2018, 9, 178-183.	3.9	53
144	Photochemical cationic polymerization of cyclohexene oxide in solution containing pyridinium salt and polysilane. European Polymer Journal, 1992, 28, 387-390.	5 . 4	52

#	Article	IF	Citations
145	Poly(styreneâ€∢i>bâ€ŧetrahydrofuran)/clay nanocomposites by mechanistic transformation. Journal of Polymer Science Part A, 2009, 47, 2190-2197.	2.3	52
146	Photochemical Methods for the Preparation of Complex Linear and Cross-linked Macromolecular Structures. Australian Journal of Chemistry, 2011, 64, 982.	0.9	52
147	Synthesis of polybenzoxazine precursors using thiols: Simultaneous thiol–ene and ringâ€opening reactions. Journal of Polymer Science Part A, 2012, 50, 4029-4036.	2.3	52
148	Synthesis and characterization of conducting polymers containing polypeptide and ferrocene side chains as ethanol biosensors. Polymer Chemistry, 2014, 5, 6295-6306.	3.9	52
149	Nearâ€Infrared Freeâ€Radical and Freeâ€Radicalâ€Promoted Cationic Photopolymerizations by Inâ€Source Lighting Using Upconverting Glass. Angewandte Chemie - International Edition, 2017, 56, 14507-14510.	13.8	52
150	Acylphosphine oxides as free radical promoters in cationic polymerizations. Die Makromolekulare Chemie Rapid Communications, 1987, 8, 209-213.	1.1	51
151	Synthesis of block copolymers by combination of an activated monomer and free radical polymerization mechanism. Macromolecules, 1993, 26, 2397-2399.	4.8	51
152	Conducting graft copolymers of poly(3-methylthienyl methacrylate) with pyrrole and thiophene. Journal of Polymer Science Part A, 2002, 40, 4131-4140.	2.3	51
153	Polythiophene derivatives by step-growth polymerization via photoinduced electron transfer reactions. Chemical Communications, 2009, , 6300.	4.1	51
154	On the mechanism of acylphosphine oxide promoted cationic polymerization. European Polymer Journal, 1989, 25, 129-131.	5.4	50
155	Graft Copolymers by the Combination of ATRP and Photochemical Acylation Process by Using Benzodioxinones. Macromolecules, 2009, 42, 3743-3749.	4.8	50
156	Naphthodioxinoneâ€1,3â€benzodioxole as photochemically masked oneâ€component type II photoinitiator for free radical polymerization. Journal of Polymer Science Part A, 2012, 50, 2612-2618.	2.3	50
157	Semiconductor nanoparticles for photoinitiation of free radical polymerization in aqueous and organic media. Journal of Polymer Science Part A, 2014, 52, 1500-1507.	2.3	50
158	A Chargeâ€Transfer Complex of Thioxanthonephenacyl Sulfonium Salt as a Visibleâ€Light Photoinitiator for Free Radical and Cationic Polymerizations. ChemPhotoChem, 2019, 3, 1187-1192.	3.0	50
159	Styrenation of castor oil and linseed oil by macromer method. Macromolecular Materials and Engineering, 2000, 283, 15-20.	3.6	49
160	The use of poly(ethylene oxide) as hydrogen donor in type II photoinitiated free radical polymerization. Polymer Bulletin, 2009, 63, 173-183.	3.3	49
161	A simple route to synthesis of branched and cross-linked polymers with clickable moieties by photopolymerization. Chemical Communications, 2012, 48, 10252.	4.1	49
162	Synthesis of Block Copolymers by Combination of Atom Transfer Radical Polymerization and Visible Lightâ€Induced Free Radical Promoted Cationic Polymerization. Macromolecular Rapid Communications, 2012, 33, 309-313.	3.9	49

#	Article	IF	CITATIONS
163	Mesoporous graphitic carbon nitride as a heterogeneous catalyst for photoinduced copper(<scp>i</scp>)-catalyzed azide–alkyne cycloaddition. RSC Advances, 2014, 4, 52170-52173.	3.6	49
164	Ammonium salt catalyzed ring-opening polymerization of 1,3-benzoxazines. Polymer, 2017, 122, 340-346.	3.8	49
165	Photoinitiation of cationic polymerization by visible light activated titanocene in the presence of onium salts. Polymer Bulletin, 2001, 46, 443-449.	3.3	48
166	New polyphenylene-g-polystyrene and polyphenylene-g-polystyrene/poly(?-caprolactone) copolymers by combined controlled polymerization and cross-coupling processes. Journal of Polymer Science Part A, 2005, 43, 879-896.	2.3	48
167	Preparation of conductive polybenzoxazines by oxidative polymerization. Journal of Polymer Science Part A, 2007, 45, 999-1006.	2.3	48
168	Synthesis of Block Copolymers by Combination of Atom Transfer Radical Polymerization and Visible Light Radical Photopolymerization Methods. Macromolecules, 2010, 43, 9198-9201.	4.8	48
169	Photochemically masked benzophenone: Photoinitiated free radical polymerization by using benzodioxinone. Polymer, 2006, 47, 7611-7614.	3.8	47
170	Functionalization of Polysulfones by Click Chemistry. Macromolecular Chemistry and Physics, 2010, 211, 2389-2395.	2.2	47
171	Photoinduced Copper(I)â€Catalyzed Click Chemistry by the Electron Transfer Process Using Polynuclear Aromatic Compounds. Macromolecular Chemistry and Physics, 2014, 215, 662-668.	2.2	47
172	Poly(phenylenevinylene)s as Sensitizers for Visible Light Induced Cationic Polymerization. Macromolecules, 2014, 47, 7296-7302.	4.8	47
173	Photochemical, Thermal Free Radical, and Cationic Polymerizations Promoted by Charge Transfer Complexes: Simple Strategy for the Fabrication of Thick Composites. Macromolecules, 2018, 51, 7872-7880.	4.8	47
174	Nearâ€Infraredâ€Induced Cationic Polymerization Initiated by Using Upconverting Nanoparticles and Titanocene. Macromolecular Rapid Communications, 2019, 40, e1900047.	3.9	47
175	Photosensitized cationic polymerization using allyl sulfonium salt. Macromolecular Chemistry and Physics, 1996, 197, 1233-1240.	2.2	46
176	Photoinitiated Cationic Polymerization of Unconventional Monomers. Macromolecular Symposia, 2006, 240, 93-101.	0.7	46
177	Hydroxyl Functional Polybenzoxazine Precursor as a Versatile Platform for Post-Polymer Modifications. Macromolecules, 2013, 46, 8434-8440.	4.8	46
178	Simultaneous Photoinduced ATRP and CuAAC Reactions for the Synthesis of Block Copolymers. Macromolecular Rapid Communications, 2014, 35, 1782-1787.	3.9	46
179	Polypeptide with electroactive endgroups as sensing platform for the abused drug †methamphetamine†by bioelectrochemical method. Talanta, 2016, 161, 789-796.	5.5	46
180	N-benzyl and N-alkoxy pyridinium salts as thermal and photochemical initiators for cationic polymerization., 1997,, 59-86.		45

#	Article	IF	CITATIONS
181	Synthesis of silver/epoxy nanocomposites by visible light sensitization using highly conjugated thiophene derivatives. Reactive and Functional Polymers, 2011, 71, 857-862.	4.1	45
182	Electrochemical deposition of polypeptides: bio-based covering materials for surface design. Polymer Chemistry, 2014, 5, 3929-3936.	3.9	45
183	Photoinduced Cross-Linking Polymerization of Monofunctional Vinyl Monomer without Conventional Photoinitiator and Cross-Linker. Macromolecules, 2007, 40, 4406-4408.	4.8	44
184	Phenacyl onium salt photoinitiators: synthesis, photolysis, and applications. Chemical Record, 2007, 7, 78-90.	5.8	44
185	Poly(benzoxazineâ€ <i>co</i> â€sulfur): An efficient sorbent for mercury removal from aqueous solution. Journal of Applied Polymer Science, 2017, 134, 45306.	2.6	44
186	Visible Light Anthraquinone Functional Phthalocyanine Photoinitiator for Free-Radical and Cationic Polymerizations. Macromolecules, 2020, 53, 112-124.	4.8	44
187	Synthesis of polyacrylamide flocculants with poly(ethylene glycol) segments by redox polymerization. Angewandte Makromolekulare Chemie, 1992, 200, 163-171.	0.2	43
188	Poly(propylene imine) dendrimers as hydrogen donor in Type II photoinitiated free radical polymerization. European Polymer Journal, 2007, 43, 4423-4430.	5.4	43
189	Macromolecular design and application using Mn ₂ (<scp>CO</scp>) ₁₀ â€based visible light photoinitiating systems. Polymer International, 2016, 65, 1001-1014.	3.1	43
190	<i>In situ</i> synthesis of polymer/clay nanocomposites by type II photoinitiated free radical polymerization. Journal of Polymer Science Part A, 2011, 49, 3658-3663.	2.3	42
191	Highly Efficient and Reusable Microporous Schiff Base Network Polymer as a Heterogeneous Catalyst for CuAAC Click Reaction. Macromolecular Chemistry and Physics, 2015, 216, 1746-1753.	2.2	42
192	Polythiophene- $\langle i \rangle g \langle i \rangle$ -poly(ethylene glycol) with Lateral Amino Groups as a Novel Matrix for Biosensor Construction. ACS Applied Materials & English & 2015, 7, 20612-20622.	8.0	42
193	Hyperbranched Polymers by Type II Photoinitiated Self-Condensing Vinyl Polymerization. Macromolecular Rapid Communications, 2016, 37, 650-654.	3.9	42
194	Photosensitized Cationic Polymerization of Cyclohexene Oxide Using a Phenacylanilinium Salt. Macromolecular Rapid Communications, 2002, 23, 567.	3.9	41
195	Synthesis of well-defined polystyrene macrophotoinitiators by atom-transfer radical polymerization. Macromolecular Chemistry and Physics, 2002, 203, 1279-1284.	2.2	41
196	A One Pot, One Step Method for the Preparation of Clickable Hydrogels by Photoinitiated Polymerization. Macromolecular Rapid Communications, 2011, 32, 1906-1909.	3.9	41
197	Concise synthesis and characterization of unsymmetric 1,3-benzoxazines by tandem reactions. Tetrahedron Letters, 2013, 54, 4966-4969.	1.4	41
198	Graft polymer growth using tandem photoinduced photoinitiator-free CuAAC/ATRP. Polymer Chemistry, 2015, 6, 946-952.	3.9	41

#	Article	IF	CITATIONS
199	One-step, one-pot photoinitiation of free radical and free radical promoted cationic polymerizations. Journal of Applied Polymer Science, 2002, 85, 2389-2395.	2.6	40
200	Photoinduced Synthesis of Oligoesters. Macromolecules, 2006, 39, 6031-6035.	4.8	40
201	In situSynthesis of Oil Based Polymer Composites Containing Silver Nanoparticles. Journal of Macromolecular Science - Pure and Applied Chemistry, 2008, 45, 698-704.	2.2	40
202	Metal Free Reversible-Deactivation Radical Polymerizations: Advances, Challenges, and Opportunities. Polymers, 2018, 10, 35.	4.5	40
203	Photoinitiated polymerization of ethyl cyanoacrylate by phosphonium salts. Angewandte Makromolekulare Chemie, 1999, 264, 56-59.	0.2	39
204	Photochemically and thermally induced radical promoted cationic polymerization using allyl phosphonium salts. Polymer, 2000, 41, 6035-6041.	3.8	39
205	Photoinitiated cationic polymerization using a novel phenacyl anilinium salt. Polymer, 2002, 43, 2575-2579.	3.8	39
206	Electroactive macromonomers based on pyrrole and thiophene: a versatile route to conducting block and graft polymers. Polymer International, 2003, 52, 1573-1578.	3.1	39
207	Immobilization of glucose oxidase in conducting graft copolymers and determination of glucose amount in orange juices with enzyme electrodes. International Journal of Biological Macromolecules, 2005, 37, 174-178.	7. 5	39
208	Long wavelength photoinitiated free radical polymerization using conjugated thiophene derivatives in the presence of onium salts. Polymer Chemistry, 2011, 2, 1185-1189.	3.9	39
209	Advanced Thermosets from Sulfur and Renewable Benzoxazine and Ionones via Inverse Vulcanization. ACS Sustainable Chemistry and Engineering, 2020, 8, 9145-9155.	6.7	39
210	Polypyrenes by Photoinduced Step-Growth Polymerization. Macromolecules, 2020, 53, 5787-5794.	4.8	39
211	Photoinitiated radical polymerization using charge transfer complex of ⟨i⟩N⟨/i⟩ â€ethoxy―⟨i⟩p⟨/i⟩ â€cyanopyridinium salt and 1,2,4â€trimethoxybenzene. Polymer International, 1998, 47, 391-392.	3.1	38
212	Synthesis and characterization of poly(p-phenylene)-graft-poly(\acute{E} -caprolactone) copolymers by combined ring-opening polymerization and cross-coupling processes. Polymer International, 2004, 53, 1219-1225.	3.1	38
213	Electrochromic properties and electrochromic device application of copolymer of N-(4-(3-thienyl) Tj ETQq1 1 0.78 102, 4500-4505.	4314 rgBT 2.6	/Overlock 1 38
214	Ring-Opening Polymerization of 1,3-Benzoxazines via Borane Catalyst. Polymers, 2018, 10, 239.	4.5	38
215	Poly(p -phenylene) graft copolymers with polytetrahydrofuran/polystyrene side chains. Polymer, 2002, 43, 2141-2149.	3.8	37
216	Photopolymerization of vinyl ether networks using an iodonium initiator—The role of photosensitizers. Journal of Polymer Science Part A, 2009, 47, 5474-5487.	2.3	37

#	Article	IF	CITATIONS
217	In Situ Synthesis of Oil-Based Polymer/Silver Nanocomposites by Photoinduced Electron Transfer and Free Radical Polymerization Processes. Composite Interfaces, 2010, 17, 357-369.	2.3	37
218	Controlled release of anticancer drug Paclitaxel using nano-structured amphiphilic star-hyperbranched block copolymers. Polymer Chemistry, 2015, 6, 5470-5477.	3.9	37
219	Combining benzoxazine and ketene chemistries for self-healing of high performance thermoset surfaces. Polymer Chemistry, 2018, 9, 2031-2039.	3.9	37
220	Nearâ€IR and UVâ€LED Sensitized Photopolymerization with Onium Salts Comprising Anions of Different Nucleophilicities. ChemPhotoChem, 2019, 3, 1127-1132.	3.0	37
221	Indole-based charge transfer complexes as versatile dual thermal and photochemical polymerization initiators for 3D printing and composites. Polymer Chemistry, 2019, 10, 4991-5000.	3.9	37
222	Coumarines as masked phenols for amide functional benzoxazines. Polymer Chemistry, 2019, 10, 1268-1275.	3.9	37
223	Visible light induced free radical promoted cationic polymerization using acylsilanes. Progress in Organic Coatings, 2019, 132, 139-143.	3.9	37
224	Cyclodextrinâ€Based Macromolecular Systems as Cholesterolâ€Mopping Therapeutic Agents in Niemann–Pick Disease Type C. Macromolecular Rapid Communications, 2019, 40, e1800557.	3.9	37
225	Conducting copolymers of polypyrrole/polytetrahydrofuran. Polymer Bulletin, 1998, 40, 639-645.	3.3	36
226	Copolymerization of butyl vinyl ether and methyl methacrylate by combination of radical and radical promoted cationic mechanisms. European Polymer Journal, 2002, 38, 151-156.	5.4	36
227	Synthesis and characterization of conducting copolymers of poly(vinyl alcohol) with thiophene side-groups and pyrrole. Polymer International, 2004, 53, 2138-2144.	3.1	36
228	Photoinitiated Cationic Polymerization of Vinyl Ethers Using Substituted Vinyl Halides. Macromolecules, 2009, 42, 4443-4448.	4.8	36
229	Thiol reactive polybenzoxazine precursors: A novel route to functional polymers by thiol-oxazine chemistry. European Polymer Journal, 2015, 69, 636-641.	5.4	36
230	Melamine-based microporous polymer for highly efficient removal of copper(II) from aqueous solution. Polymer International, 2016, 65, 439-445.	3.1	36
231	Photoinitiated Cationic Polymerization of Cyclohexene Oxide by Using Phenacyl Benzoylpyridinium Salts. Macromolecules, 2006, 39, 2736-2738.	4.8	35
232	Polysulfone/Clay Nanocomposites by in situ Photoinduced Crosslinking Polymerization. Macromolecular Materials and Engineering, 2011, 296, 1101-1106.	3.6	35
233	Characterization of polymeric LB thin films for sensor applications. Journal of Applied Polymer Science, 2012, 123, 2414-2422.	2.6	35
234	Photoinduced <scp>stepâ€growth</scp> polymerization of thieno[3,4â€b] thiophene derivatives. The substitution effect on the reactivity and electrochemical properties. Journal of Polymer Science, 2020, 58, 2327-2334.	3.8	35

#	Article	IF	Citations
235	Addition–fragmentation reactions in polymer chemistry. Reactive and Functional Polymers, 1999, 42, 255-264.	4.1	34
236	Photoinitiated polymerization of methyl methacrylate by phenacyl type salts. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 159, 151-159.	3.9	34
237	Photoinitiated Cationic Polymerization of Mono and Divinyl Ethers in Aqueous Medium Using Ytterbium Triflate as Lewis Acid. Macromolecular Chemistry and Physics, 2008, 209, 1881-1886.	2.2	34
238	Functionalization of Poly(divinylbenzene) Microspheres by Combination of Hydrobromination and Click Chemistry Processes: A Model Study. Designed Monomers and Polymers, 2009, 12, 511-522.	1.6	34
239	Polysulfone based amphiphilic graft copolymers by click chemistry as bioinert membranes. Materials Science and Engineering C, 2011, 31, 1091-1097.	7.3	34
240	Telechelic Polymers by Visibleâ€Lightâ€Induced Radical Coupling. Macromolecular Chemistry and Physics, 2013, 214, 94-98.	2.2	34
241	Thiol-benzoxazine chemistry as a novel Thiol-X reaction for the synthesis of block copolymers. Polymer, 2014, 55, 5550-5556.	3.8	34
242	Polystyrene-b-poly(2-vinyl phenacyl pyridinium) salts as photoinitiators for free radical and cationic polymerizations and their photoinduced molecular associations. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 285, 30-36.	3.9	34
243	Polyethylene-g-poly(cyclohexene oxide) by Mechanistic Transformation from ROMP to Visible Light-Induced Free Radical Promoted Cationic Polymerization. Macromolecules, 2015, 48, 1658-1663.	4.8	34
244	Nahinfrarotâ€sensibilisierte photoinduzierte ATRP mit einer Kupfer(II)â€Katalysatorkonzentration im ppmâ€Bereich. Angewandte Chemie, 2018, 130, 8025-8030.	2.0	34
245	Visible Light Induced Cationic Polymerization of Epoxides by Using Multiwalled Carbon Nanotubes. Macromolecular Rapid Communications, 2018, 39, e1800250.	3.9	34
246	A water-soluble poly(methylphenylsilylene) derivative as a photoinitiator of radical polymerization of hydrophilic vinyl monomers. Polymer Bulletin, 1992, 29, 277-282.	3.3	33
247	Drying and semidrying oil macromonomers. III. Styrenation of sunflower and linseed oils. Journal of Applied Polymer Science, 2003, 88, 2373-2376.	2.6	33
248	2-Mercapto thioxanthone as a chain transfer agent in free-radical polymerization: A versatile route to incorporate thioxanthone moieties into polymer chain-ends. Journal of Applied Polymer Science, 2007, 103, 3766-3770.	2.6	33
249	Hyperbranced Polymers by Photoinduced Selfâ€Condensing Vinyl Polymerization Using Bisbenzodioxinone. Macromolecular Chemistry and Physics, 2017, 218, 1700045.	2.2	33
250	Poly(propylene oxide)-thioxanthone as one-component Type II polymeric photoinitiator for free radical polymerization with low migration behavior. European Polymer Journal, 2017, 95, 71-81.	5.4	33
251	Phenacyl Phenothiazinium Salt as a New Broadâ€Wavelengthâ€Absorbing Photoinitiator for Cationic and Free Radical Polymerizations. Angewandte Chemie - International Edition, 2021, 60, 16917-16921.	13.8	33
252	Immobilization of invertase in conducting thiophene-capped poly(methylmethacrylate)/polypyrrole matrices. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 1223-1235.	3.5	32

#	Article	lF	CITATIONS
253	A novel macroinimer of polyethylene oxide: synthesis of hyper branched networks by photoinduced H-abstraction process. European Polymer Journal, 2003, 39, 545-550.	5.4	32
254	Layered Morphology of Poly(phenylene)s in Thin Films Induced by Substitution of Well-Defined Poly($\hat{l}\mu$ -caprolactone) Side Chains. Macromolecules, 2005, 38, 6402-6410.	4.8	32
255	Immobilization of invertase and glucose oxidase in conducting copolymers of thiophene functionalized poly(vinyl alcohol) with pyrrole. Reactive and Functional Polymers, 2006, 66, 365-371.	4.1	32
256	The synthesis and targeting of PPP-type copolymers to breast cancer cells: Multifunctional platforms for imaging and diagnosis. Journal of Materials Chemistry, 2012, 22, 9293.	6.7	32
257	Dibenzoyldiethylgermane as a visible light photo-reducing agent for CuAAC click reactions. Polymer Chemistry, 2015, 6, 8168-8175.	3.9	32
258	Photopolymerization of Macroscale Black 3D Objects Using Near-Infrared Photochemistry. ACS Applied Materials & Description of Macroscale Black 3D Objects Using Near-Infrared Photochemistry. ACS Applied Materials & Description of Macroscale Black 3D Objects Using Near-Infrared Photochemistry. ACS Applied Materials & Description of Macroscale Black 3D Objects Using Near-Infrared Photochemistry. ACS Applied Materials & Description of Macroscale Black 3D Objects Using Near-Infrared Photochemistry. ACS Applied Materials & Description of Macroscale Black 3D Objects Using Near-Infrared Photochemistry. ACS Applied Materials & Description of Macroscale Black 3D Objects Using Near-Infrared Photochemistry. ACS Applied Materials & Description of Macroscale Black 3D Objects Using Near-Infrared Photochemistry. ACS Applied Materials & Description of Macroscale Black 3D Objects Using Near-Infrared Photochemistry. ACS Applied Materials & Description of Macroscale Black 3D Objects Using Near-Infrared Photochemistry. ACS Applied Materials & Description of Macroscale Black 3D Objects Using Near-Infrared Photochemistry. ACS Applied Materials Near-Infrared Photochemistry. ACS Applied Near-Infrared Near-Infrared Photochem	8.0	32
259	Advanced Polymers from Simple Benzoxazines and Phenols by Ring-Opening Addition Reactions. Macromolecules, 2020, 53, 2354-2361.	4.8	32
260	Photoinitiated Zwitterionic Polymerization of Alkyl Cyanoacrylates by Pyridinium Salts. Macromolecules, 1996, 29, 8973-8974.	4.8	31
261	Photoinitiating systems and their use in polymer synthesis. Macromolecular Symposia, 2000, 161, 19-36.	0.7	31
262	Polystyrene macromonomer with boronic acid propanediol diester functionality prepared by ATRP for synthesis of comb-like polyphenylenes. Polymer Bulletin, 2001, 47, 17-24.	3.3	31
263	Bifunctional Initiators: Synthesis, Characterization, and Initiator Properties of Azo-Benzoin Initiators. Journal of Macromolecular Science Part A, Chemistry, 1990, 27, 743-753.	0.3	30
264	Direct and sensitized photoinitiated cationic polymerization using pyridinium salts. Macromolecular Symposia, 1994, 85, 115-127.	0.7	30
265	Synthesis of block copolymers by using polysilanes. Angewandte Makromolekulare Chemie, 1994, 221, 207-216.	0.2	30
266	Synthesis and characterization of cyclohexene oxide functional poly(?-caprolactone) macromonomers and their use in photoinitiated cationic homo- and copolymerization. Journal of Polymer Science Part A, 2004, 42, 3365-3372.	2.3	30
267	Electron Transfer Reactions of Radical Anions with TEMPO: A Versatile Route for Transformation of Living Anionic Polymerization into Stable Radical-Mediated Polymerization. Macromolecular Rapid Communications, 2004, 25, 1697-1702.	3.9	30
268	Synthesis and characterization of thiophene functionalized polystyrene copolymers and their electrochemical properties. Polymer International, 2005, 54, 1599-1605.	3.1	30
269	Photoinduced Crosslinking of Polymers Containing Pendant Hydroxyl Groups by Using Bisbenzodioxinones. Macromolecular Rapid Communications, 2007, 28, 72-77.	3.9	30
270	N-alkoxy pyridinium ion terminated polystyrenes: A facile route to photoinduced block copolymerization. Journal of Polymer Science Part A, 2007, 45, 423-428.	2.3	30

#	Article	IF	CITATIONS
271	Synthesis of Block Copolymers Based on Polyethylene by Thermally Induced Controlled Radical Polymerization Using Mn ₂ (CO) ₁₀ . Macromolecular Chemistry and Physics, 2015, 216, 958-963.	2.2	30
272	Photoâ€Induced Crossâ€Linking of Divinyl Ethers by Using Diphenyliodonium Salts With Highly Nucleophilic Counter Anions in the Presence of Zinc Halides. Macromolecular Rapid Communications, 2008, 29, 202-206.	3.9	29
273	Photoinitiated Bulk and Emulsion Polymerization of Styrene – Evidence for Photo-Controlled Radical Polymerization. Macromolecules, 2011, 44, 9539-9549.	4.8	29
274	Thermal degradation of polysiloxane and polyetherester containing benzoxazine moieties in the main chain. Journal of Analytical and Applied Pyrolysis, 2011, 90, 155-163.	5.5	29
275	Visibleâ€Lightâ€Induced Copper(I)â€Catalyzed Azideâ€Alkyne Cycloaddition Initiated by Zinc Oxide Semiconductor Nanoparticles. Asian Journal of Organic Chemistry, 2015, 4, 442-444.	2.7	29
276	Combining polybenzoxazines and polybutadienes <i>via</i> simultaneous inverse and direct vulcanization for flexible and recyclable thermosets by polysulfide dynamic bonding. Polymer Chemistry, 2019, 10, 5743-5750.	3.9	29
277	Counterion Effect of Amine Salts on Ringâ€Opening Polymerization of 1,3â€Benzoxazines. Macromolecular Chemistry and Physics, 2019, 220, 1800268.	2.2	29
278	Synthesis of thioamide containing polybenzoxazines by the Willgerodt–Kindler reaction. Polymer Chemistry, 2021, 12, 534-544.	3.9	29
279	Design, Synthesis and Use of Phthalocyanines as a New Class of Visible-Light Photoinitiators for Free-Radical and Cationic Polymerizations. Polymer Chemistry, 0, , .	3.9	29
280	A new macroazo-initiator for the synthesis of polymers with crown ether units. Journal of Polymer Science, Part C: Polymer Letters, 1986, 24, 49-52.	0.7	28
281	Novel Poly(phenylene vinylenes) with Well-Defined Poly(ε-caprolactone) or Polystyrene as Lateral Substituents:  Synthesis and Characterization. Macromolecules, 2007, 40, 5301-5310.	4.8	28
282	Synthesis of block copolymers by combination of ATRP and photoiniferter processes. Polymer International, 2008, 57, 1182-1187.	3.1	28
283	Bioapplications of Polythiophene-g-Polyphenylalanine-Covered Surfaces. Macromolecular Chemistry and Physics, 2015, 216, 1868-1878.	2.2	28
284	Synthesis of block copolymers by selective H-abstraction and radical coupling reactions using benzophenone/benzhydrol photoinitiating system. European Polymer Journal, 2015, 62, 304-311.	5.4	28
285	Photoinduced synthesis of poly(<i>N</i> -ethylcarbazole) from phenacylium salt without conventional catalyst and/or monomer. Chemical Communications, 2019, 55, 11531-11534.	4.1	28
286	Near-infrared light induced cationic polymerization based on upconversion and ferrocenium photochemistry. Polymer Chemistry, 2019, 10, 5574-5577.	3.9	28
287	Thiophene Ended <i>ϵ</i> â€Caprolactone Conducting Copolymers and their Electrochromic Properties. Journal of Macromolecular Science - Pure and Applied Chemistry, 2005, 42, 509-520.	2.2	27
288	Photoinitiated curing of mono―and bifunctional epoxides by combination of active chain end and activated monomer cationic polymerization methods. Journal of Polymer Science Part A, 2007, 45, 4914-4920.	2.3	27

#	Article	lF	CITATIONS
289	Phenacylpyridinium Oxalate as a Novel Water-Soluble Photoinitiator for Free Radical Polymerization. Polymer Bulletin, 2008, 59, 759-766.	3.3	27
290	Surface modification of UVâ€cured epoxy resins by click chemistry. Journal of Polymer Science Part A, 2010, 48, 2862-2868.	2.3	27
291	Polysulfone/Metal Nanocomposites by Simultaneous Photoinduced Crosslinking and Redox Reaction. Macromolecular Materials and Engineering, 2011, 296, 820-825.	3. 6	27
292	Tandem Photoinduced Cationic Polymerization and CuAAC for Macromolecular Synthesis. Macromolecules, 2015, 48, 7446-7452.	4.8	27
293	Sulfonium salt based charge transfer complexes as dual thermal and photochemical polymerization initiators for composites and 3D printing. Polymer Chemistry, 2019, 10, 4690-4698.	3.9	27
294	Preparation of multiphase block copolymers by redox polymerization process. Angewandte Makromolekulare Chemie, 1992, 195, 121-127.	0.2	26
295	Synthesis of block copolymers by combination of atom transfer radical and promoted cationic polymerization mechanisms. European Polymer Journal, 1999, 35, 2031-2038.	5.4	26
296	Block Copolymers by Using Combined Controlled Radical and Radical Promoted Cationic Polymerization Methods. Polymer Bulletin, 2003, 50, 131-138.	3.3	26
297	Conducting Copolymers of 3-Methylthienyl Methacrylate and p-Vinylbenzyloxy Poly(ethyleneoxide) and Their Electrochromic Properties. Polymer Bulletin, 2005, 53, 193-201.	3.3	26
298	Diethoxyâ€azobis(pyridinium) Salt as Photoinitiator for Cationic Polymerization: Towards Wavelength Tunability by ⟨i⟩Cis–Trans⟨ i⟩ Isomerization. Macromolecular Rapid Communications, 2008, 29, 892-896.	3.9	26
299	Polyacrylamide cryogels by photoinitiated free radical polymerization. Journal of Polymer Science Part A, 2010, 48, 4989-4994.	2.3	26
300	Possibilities for Photoinduced Controlled Radical Polymerizations. ACS Symposium Series, 2012, , 59-72.	0.5	26
301	Copper(II) thioxanthone carboxylate as a photoswitchable photocatalyst for photoinduced click chemistry. Tetrahedron Letters, 2015, 56, 6440-6443.	1.4	26
302	Fullerene-Attached Polymeric Homogeneous/Heterogeneous Photoactivators for Visible-Light-Induced CuAAC Click Reactions. ACS Macro Letters, 2016, 5, 103-107.	4.8	26
303	Living Cationic Polymerization of Vinyl Ethers through a Photoinduced Radical Oxidation/Addition/Deactivation Sequence. Angewandte Chemie, 2017, 129, 534-538.	2.0	26
304	Synthesis and reactions of polymers with photoactive terminal groups: 2. New azo-initiator for the synthesis of polymers with N-acyldibenz[b,f] azepine terminal units. Polymer, 1978, 19, 354-356.	3.8	25
305	Title is missing!. Angewandte Makromolekulare Chemie, 1990, 181, 191-197.	0.2	25
306	Synthesis and Characterization of \hat{l}_{\pm} , \hat{l}_{∞} -Heterofunctional Poly(ethylene oxide) Macromonomers. Macromolecular Rapid Communications, 2003, 24, 316-319.	3.9	25

#	Article	IF	CITATION
307	Photoinduced Decomposition of Dibenzoyldiethylgermane: A Photochemical Route to Polygermanes. Macromolecules, 2009, 42, 2899-2902.	4.8	25
308	Synthesis and Characterization of Telechelic Block Co-polymers by Combination of Atom Transfer Radical Polymerization and Click Chemistry Processes. Designed Monomers and Polymers, 2010, 13, 459-472.	1.6	25
309	Photoinitiated Cationic Polymerization of Vinyl Ethers Using Substituted Vinyl Halides in the Presence of Metallic Zinc. Macromolecules, 2011, 44, 5569-5572.	4.8	25
310	Intramolecular Cross-linking of Polymers Using Difunctional Acetylenes via Click Chemistry. Designed Monomers and Polymers, $2011, 14, 69-78$.	1.6	25
311	Synthesis and Characterization of Polysulfone/ <scp>POSS</scp> Hybrid Networks by Photoinduced Crosslinking Polymerization. Macromolecular Materials and Engineering, 2013, 298, 1117-1123.	3.6	25
312	Electrochemical manipulation of adhesion strength of polybenzoxazines on metal surfaces: from strong adhesion to dismantling. RSC Advances, 2014, 4, 27545.	3.6	25
313	Magnetic iron oxide nanoparticles as long wavelength photoinitiators for free radical polymerization. Polymer Chemistry, 2015, 6, 1918-1922.	3.9	25
314	Post-Modification of Polybutadienes by Photoinduced Hydrogen Abstraction from Benzoxazines and Their Thermally Activated Curing. Macromolecules, 2016, 49, 5026-5032.	4.8	25
315	Celluloseâ€Derived Functional Polyacetal by Cationic Ringâ€Opening Polymerization of Levoglucosenyl Methyl Ether. Angewandte Chemie - International Edition, 2019, 58, 18492-18495.	13.8	25
316	pH-Responsive Polymersome Microparticles as Smart Cyclodextrin-Releasing Agents. Biomacromolecules, 2019, 20, 4001-4007.	5.4	25
317	Synthesis and Characterization of Block-Graft Copolymers [poly(epichlorohydrin-b-styrene)-g-poly(methyl methacrylate)] by Combination of Activated Monomer Polymerization, NMP and ATRP. Polymer Bulletin, 2007, 58, 653-663.	3.3	24
318	Synthesis of block and star copolymers by photoinduced radical coupling process. Journal of Polymer Science Part A, 2009, 47, 2938-2947.	2.3	24
319	New photoinitiating systems designed for polymer/inorganic hybrid nanocoatings. Journal of Coatings Technology Research, 2012, 9, 125-134.	2.5	24
320	Polymer grafting onto magnetite nanoparticles by "click―reaction. Journal of Materials Science, 2012, 47, 412-419.	3.7	24
321	Oneâ€Pot, Oneâ€Step Strategy for the Preparation of Clickable Melamine Based Microporous Organic Polymer Network. Macromolecular Materials and Engineering, 2015, 300, 1116-1122.	3.6	24
322	Phenacyl Ethyl Carbazolium as a Long Wavelength Photoinitiator for Free Radical Polymerization. Macromolecular Rapid Communications, 2015, 36, 2070-2075.	3.9	24
323	Selective Cell Adhesion and Biosensing Applications of Bio-Active Block Copolymers Prepared by CuAAC/Thiol-ene Double Click Reactions. Macromolecular Bioscience, 2015, 15, 1233-1241.	4.1	24
324	Hydrophobic coatings from photochemically prepared hydrophilic polymethacrylates via electrospraying. Journal of Polymer Science Part A, 2017, 55, 1338-1344.	2.3	24

#	Article	IF	CITATIONS
325	Preparation of fluorinated methacrylate/clay nanocomposite via ⟨i⟩inâ€situ⟨/i⟩ polymerization: Characterization, structure, and properties. Journal of Polymer Science Part A, 2017, 55, 411-418.	2.3	24
326	Visible light-induced free radical promoted cationic polymerization using organotellurium compounds. Polymer Chemistry, 2018, 9, 5639-5643.	3.9	24
327	An oxygen-tolerant visible light induced free radical polymerization using mesoporous graphitic carbon nitride. European Polymer Journal, 2020, 122, 109410.	5.4	24
328	Synthesis of block copolymers by the transformation of cationic polymerization into reversible atom transfer radical polymerization. Journal of Polymer Science Part A, 2002, 40, 2199-2208.	2.3	23
329	Synthesis and characterization of mid- and end-chain functional telechelics by controlled polymerization methods and coupling processes. Journal of Polymer Science Part A, 2006, 44, 727-743.	2.3	23
330	Synthesis, Characterization and Thermally-Activated Curing of Azobenzene-Containing Benzoxazines. Designed Monomers and Polymers, 2008, 11, 473-482.	1.6	23
331	Polymer/clay nanocomposites through multiple hydrogenâ€bonding interactions. Journal of Polymer Science Part A, 2015, 53, 650-658.	2.3	23
332	An immunoelectrochemical platform for the biosensing of  Cocaine use'. Sensors and Actuators B: Chemical, 2017, 246, 310-318.	7.8	23
333	Hyperbranched Polymers by Lightâ€Induced Selfâ€Condensing Vinyl Polymerization. Macromolecular Rapid Communications, 2018, 39, e1800276.	3.9	23
334	Nearâ€Infrared Photoinduced Copperâ€Catalyzed Azideâ€Alkyne Click Chemistry with a Cyanine Comprising a Barbiturate Group. ChemPhotoChem, 2019, 3, 1180-1186.	3.0	23
335	The Journey of Phenolics from the First Spark to Advanced Materials. Israel Journal of Chemistry, 2020, 60, 20-32.	2.3	23
336	Cyanuric chloride as a potent catalyst for the reduction of curing temperature of benzoxazines. Polymer Chemistry, 2020, 11, 1025-1032.	3.9	23
337	On the Reactions of Diphenyliodonium and Triphenylsulphonium Salts with Hydroxyl and 2-Hydroxy-2-Propyl Radicals. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1987, 42, 1425-1427.	1.5	22
338	Crosslinkable maleimide copolymers for stable NLO properties. Journal of Polymer Science Part A, 2001, 39, 1589-1595.	2.3	22
339	Synthesis and characterization of thiophene-substitutedN-phenyl maleimide polymers by photoinduced radical polymerization. Journal of Polymer Science Part A, 2002, 40, 995-1004.	2.3	22
340	Synthesis of block copolymers by combined ultrasonic irradiation and reverse atom transfer radical polymerization processes. Journal of Polymer Science Part A, 2004, 42, 534-540.	2.3	22
341	A novel poly(<i>p</i> pi>â€phenylene) containing alternating poly(perfluorooctylethyl) Tj ETQq1 1 0.784314 rgBT /0 radical polymerization and Suzuki coupling processes. Journal of Polymer Science Part A, 2012, 50, 4911-4919.	Overlock 1 2.3	0 Tf 50 112 22
342	Synthesis and characterization of polyphenylenes with polypeptide and poly(ethylene glycol) side chains. Journal of Polymer Science Part A, 2015, 53, 1785-1793.	2.3	22

#	Article	IF	CITATIONS
343	Synthesis of clickable hydrogels and linear polymers by type <scp>II</scp> photoinitiation. Polymer International, 2015, 64, 588-594.	3.1	22
344	Simultaneous and Sequential Synthesis of Polyaniline- <i>g</i> poly(ethylene glycol) by Combination of Oxidative Polymerization and CuAAC Click Chemistry: A Water-Soluble Instant Response Glucose Biosensor Material. Macromolecules, 2017, 50, 1824-1831.	4.8	22
345	Gold nanoparticle conjugated poly(p -phenylene- \hat{l}^2 -cyclodextrin)-graft -poly(ethylene glycol) for theranostic applications. Journal of Applied Polymer Science, 2019, 136, 47250.	2.6	22
346	Synthesis of hydroxy-terminated polytetrahydrofuran by photoinduced process. Polymer Bulletin, 1995, 35, 567-573.	3.3	21
347	Photoinitiated cationic polymerization using o-phthaldehyde and pyridinium salt. Journal of Polymer Science Part A, 1995, 33, 1461-1464.	2.3	21
348	Thermally induced radical promoted cationic polymerization using a novel N-allyloxypyridinium salt. Macromolecular Chemistry and Physics, 1997, 198, 19-28.	2.2	21
349	Design and Synthesis of Thermally Curable Polymers with Benzoxazine Functionalities. Macromolecular Symposia, 2006, 245-246, 27-33.	0.7	21
350	Preparation of MIP grafts for quercetin by tandem aryl diazonium surface chemistry and photopolymerization. Mikrochimica Acta, 2013, 180, 1411-1419.	5.0	21
351	Synthesis and properties of organo-gels by thiol-benzoxazine chemistry. Polymer, 2015, 75, 44-50.	3.8	21
352	Diphenylphenacyl sulfonium salt as dual photoinitiator for free radical and cationic polymerizations. Journal of Polymer Science Part A, 2018, 56, 451-457.	2.3	21
353	Visible light induced radical coupling reactions for the synthesis of conventional polycondensates. Polymer Chemistry, 2019, 10, 5652-5658.	3.9	21
354	Visible light induced step-growth polymerization by electrophilic aromatic substitution reactions. Chemical Communications, 2021, 57, 5398-5401.	4.1	21
355	Block copolymers by combinations of cationic and radical routes. Polymer Bulletin, 1986, 15, 293.	3.3	20
356	Addition-Fragmentation Reactions for Cationic Polymerization using a Novel Allyloxy-picolinium Salt. Polymer International, 1997, 43, 27-32.	3.1	20
357	Title is missing!. Journal of Materials Science, 2002, 37, 1767-1775.	3.7	20
358	Swelling and elasticity of hydrogels based on poly(ethylene oxide) macroinimer. Polymer International, 2004, 53, 237-242.	3.1	20
359	Poly(thienyl-phenylene)s with macromolecular side chains by oxidative polymerization of well-defined macromonomers. Journal of Polymer Science Part A, 2007, 45, 848-865.	2.3	20
360	Synthesis and morphological characterization of poly($\hat{l}\mu$ -caprolactone) and poly(2-methyloxazoline) substituted phenyl rings and phenylene oligomers. Journal of Polymer Science Part A, 2007, 45, 2091-2104.	2.3	20

#	Article	IF	CITATIONS
361	Perfectly Alternating Amphiphilic Poly(p-phenylene) Graft Copolymers by Combination of Controlled Radical Polymerization and Suzuki Coupling Processes. Macromolecules, 2010, 43, 2732-2738.	4.8	20
362	Photoinduced grafting of polystyrene onto silica particles by ketene chemistry. Journal of Polymer Science Part A, 2012, 50, 2517-2520.	2.3	20
363	Thermal degradation characteristics of polysulfones with benzoxazine end groups. Journal of Analytical and Applied Pyrolysis, 2012, 94, 146-152.	5.5	20
364	Efficient photoinduced <i>In situ</i> preparation of clay/poly(glycidyl methacrylate) nanocomposites using hydrogenâ€donor silane. Journal of Polymer Science Part A, 2015, 53, 800-808.	2.3	20
365	Separation of block copolymers from parent homopolymers by means of liquid chromatography at the critical adsorption point. Polymer Bulletin, 1997, 38, 681-688.	3.3	19
366	Use of N, N-dimethylaniline end-functional polymers in photoinduced block copolymerization. Journal of Applied Polymer Science, 2004, 93, 387-394.	2.6	19
367	Synthetic Strategies to Combine High Performance Benzoxazine Thermosets with Polymers. Macromolecular Symposia, 2010, 298, 145-153.	0.7	19
368	In situsynthesis of A3-type star polymer/clay nanocomposites by atom transfer radical polymerization. Journal of Polymer Science Part A, 2013, 51, 5257-5262.	2.3	19
369	Oneâ€component, doubleâ€chromophoric thioxanthone photoinitiators for free radical polymerization. Journal of Polymer Science Part A, 2017, 55, 3475-3482.	2.3	19
370	A Functional Platform for the Detection of JWH-073 as a Model for Synthetic Cannabinoids. ChemElectroChem, 2018, 5, 1253-1258.	3.4	19
371	A new ethanol biosensor based on polyfluorene-g-poly(ethylene glycol) and multiwalled carbon nanotubes. European Polymer Journal, 2020, 122, 109300.	5.4	19
372	Title is missing!. Angewandte Makromolekulare Chemie, 1996, 237, 163-171.	0.2	18
373	Polytetrahydrofuran macroinimer. Polymer Bulletin, 1996, 36, 27-34.	3.3	18
374	Thermally and photochemically induced cationic polymerization using 2-methyl-1-(2-phenyl-2-propenyloxy)-pyridinium salts as initiators. Polymer, 1997, 38, 5389-5395.	3.8	18
375	Controlled Synthesis of Block Copolymers Containing Side Chain Thiophene Units and Their Use in Electrocopolymerization with Thiophene and Pyrrole. Journal of Macromolecular Science - Pure and Applied Chemistry, 2004, 41, 401-418.	2.2	18
376	Polymers with Side Chain <i>N</i> àâ€Alkoxy Pyridinium Ions as Precursors for Photoinduced Grafting and Modification Processes. Macromolecular Chemistry and Physics, 2007, 208, 1737-1743.	2.2	18
377	Polysulfone/Pyrene Membranes: A New Microwell Assay Platform for Bioapplications. Macromolecular Bioscience, 2011, 11, 1235-1243.	4.1	18
378	Influence of type of zinc salts on photoinitiated living cationic polymerization of vinyl ethers. Polymer, 2013, 54, 4798-4801.	3.8	18

#	Article	IF	CITATIONS
379	Thermally curable benzoxazine-modified vegetable oil as a coating material. Journal of Coatings Technology Research, 2013, 10, 559-569.	2.5	18
380	Nearâ€Infrared Freeâ€Radical and Freeâ€Radicalâ€Promoted Cationic Photopolymerizations by Inâ€Source Lighting Using Upconverting Glass. Angewandte Chemie, 2017, 129, 14699-14702.	2.0	18
381	One-Pot Synthesis of Amide-Functional Main-Chain Polybenzoxazine Precursors. Polymers, 2019, 11, 679.	4.5	18
382	Chemiluminescence Induced Cationic Photopolymerization Using Sulfonium Salt. ACS Macro Letters, 2020, 9, 471-475.	4.8	18
383	Fluorene–Carbazole-Based Porous Polymers by Photoinduced Electron Transfer Reactions. Macromolecules, 2020, 53, 1645-1651.	4.8	18
384	Preparation of the macroazo-initiator by interfacial polymerization. Journal of Polymer Science, Part C: Polymer Letters, 1986, 24, 491-494.	0.7	17
385	Synthesis, decomposition, and initiator properties of macroazonitriles for the preparation of polymers with crown ether units. Journal of Polymer Science Part A, 1990, 28, 1721-1733.	2.3	17
386	An allylic pyridinium salt: Radical promoted latent thermal catalyst for cationic polymerization. Journal of Polymer Science Part A, 1996, 34, 3621-3624.	2.3	17
387	IMMOBILIZATION OF YEAST CELLS IN SEVERAL CONDUCTING POLYMER MATRICES. Journal of Macromolecular Science - Pure and Applied Chemistry, 2002, 39, 183-197.	2.2	17
388	Benzophenone based addition fragmentation agent for photoinitiated cationic polymerization. European Polymer Journal, 2002, 38, 1845-1850.	5.4	17
389	Immobilization of invertase in conducting polypyrrole/PMMA-co-PMTM graft copolymers. Journal of Applied Polymer Science, 2005, 96, 502-507.	2.6	17
390	Photochemically prepared polysulfone/poly(ethylene glycol) amphiphilic networks and their biomolecule adsorption properties. Colloids and Surfaces B: Biointerfaces, 2011, 88, 265-270.	5.0	17
391	Complex Structured Fluorescent Polythiophene Graft Copolymer as a Versatile Tool for Imaging, Targeted Delivery of Paclitaxel, and Radiotherapy. Biomacromolecules, 2016, 17, 2399-2408.	5.4	17
392	Synthesis of block copolymers by the combination of chain transfer polymerization and initer process. Journal of Applied Polymer Science, 1992, 46, 1639-1643.	2.6	16
393	Hybrid thermotropic liquidâ€crystalline block copolymers. Macromolecular Symposia, 1994, 77, 349-358.	0.7	16
394	Synthesis of hybrid liquid crystalline block copolymers by combination of cationic or promoted cationic and free-radical polymerizations. Polymer Bulletin, 1995, 34, 539-546.	3.3	16
395	Initiation of cationic polymerization by photoinduced electron transfer. Macromolecular Symposia, 1998, 134, 177-188.	0.7	16
396	Synthesis of a novel addition-fragmentation agent based on Michler's ketone and its use as photo-initiator for cationic polymerization. Polymer, 2001, 42, 6681-6685.	3.8	16

#	Article	IF	CITATIONS
397	A Novel Bifunctional Addition-Fragmentation Agent for Photoinitiated Cationic Polymerization. Macromolecular Chemistry and Physics, 2001, 202, 527-531.	2.2	16
398	The Effect of the Heteroatom Moiety of Allylic Salts on the Addition Fragmentation Initiation of Cationic Polymerization. Macromolecular Chemistry and Physics, 2001, 202, 1950-1954.	2.2	16
399	Spectroscopic and theoretical investigation of capillary-induced keto–enol tautomerism of phenacyl benzoylpyridinium-type photoinitiators. Polymer International, 2007, 56, 525-531.	3.1	16
400	Synthesis and Characterization of Polyacetylene with Side-chain Thiophene Functionality. International Journal of Molecular Sciences, 2008, 9, 383-393.	4.1	16
401	Polystyrene/clay nanocomposites by atom transfer radical nitroxide coupling chemistry. Journal of Polymer Science Part A, 2013, 51, 1024-1028.	2.3	16
402	Synthesis, characterization and targeted cell imaging applications of poly(p-phenylene)s with amino and poly(ethylene glycol) substituents. RSC Advances, 2015, 5, 60861-60869.	3.6	16
403	Picomolar Detection of Melamine Using Molecularly Imprinted Polymerâ€Based Electrochemical Sensors Prepared by UVâ€Graft Photopolymerization. Electroanalysis, 2015, 27, 429-439.	2.9	16
404	Polymeric Thioxanthones as Potential Anticancer and Radiotherapy Agents. Macromolecular Rapid Communications, 2016, 37, 1046-1051.	3.9	16
405	Double fluorescence assay via a \hat{l}^2 -cyclodextrin containing conjugated polymer as a biomimetic material for cocaine sensing. Polymer Chemistry, 2017, 8, 3333-3340.	3.9	16
406	Block Copolymers by Mechanistic Transformation from PROAD to Iniferter Process. Macromolecular Rapid Communications, 2018, 39, e1800464.	3.9	16
407	Addition-fragmentation type initiation of cationic polymerization using allyloxy-pyridinium salts. Polymer International, 1998, 47, 345-350.	3.1	15
408	Synthesis of conducting polysiloxane â€" polypyrrole graft copolymers. Polymer Bulletin, 2002, 47, 501-508.	3.3	15
409	Photoinduced Free Radical Promoted Cationic Block Copolymerization by Using Macrophotoinitiators Prepared by ATRP and Ring-Opening Polymerization Methods. ACS Symposium Series, 2003, , 383-393.	0.5	15
410	Synthesis of Well-Defined Hybrid Macromonomers of Poly(ethylene oxide) and Their Reactivity in Photoinitiated Polymerization. Macromolecular Chemistry and Physics, 2004, 205, 1471-1478.	2.2	15
411	Wavelength Flexibility in Photoinitiated Cationic Polymerization. Macromolecular Symposia, 2004, 215, 267-280.	0.7	15
412	Synthesis and characterization of new alternating, amphiphilic, comblike copolymers of poly(ethylene) Tj ETQq0	0 0 rgBT	/Overlock 10 T
413	Diazonium salts for surface-confined visible light radical photopolymerization. Journal of Polymer Science Part A, 2016, 54, 3506-3515.	2.3	15
414	Poly(o-aminophenol) prepared by Cu(<scp>ii</scp>) catalyzed air oxidation and its use as a bio-sensing architecture. Polymer Chemistry, 2017, 8, 3881-3888.	3.9	15

#	Article	IF	CITATIONS
415	Modification of Polyolefins by Click Chemistry. Macromolecular Chemistry and Physics, 2017, 218, 1700279.	2.2	15
416	Benzodioxinone Photochemistry in Macromolecular Science: Progress, Challenges, and Opportunities. ACS Macro Letters, 2017, 6, 1392-1397.	4.8	15
417	Surface Modification with a Catechol-Bearing Polypeptide and Sensing Applications. Biomacromolecules, 2018, 19, 3067-3076.	5.4	15
418	A new anthraquinone derivative as a near UV and visible light photoinitiator for free-radical, thiol–ene and cationic polymerizations. Polymer Chemistry, 2021, 12, 3299-3306.	3.9	15
419	Visible Light Induced Conventional Stepâ€Growth and Chainâ€Growth Condensation Polymerizations by Electrophilic Aromatic Substitution. Macromolecular Rapid Communications, 2022, 43, e2100584.	3.9	15
420	Exploiting the reversible covalent bonding of boronic acids for self-healing/recycling of main-chain polybenzoxazines. Polymer Chemistry, 2022, 13, 3631-3638.	3.9	15
421	Bifunctional polytetrahydrofuran initiator for sequential photochemical and thermal initiation. Macromolecular Rapid Communications, 1995, 16, 387-391.	3.9	14
422	Conducting copolymers of polytetrahydrofuran and their electrochromic properties. Journal of Applied Polymer Science, 2005, 95, 1014-1023.	2.6	14
423	Photopolymerization Kinetics and Dynamic Mechanical Properties of Silanes Hydrolyzed without Evolution of Byproducts. Tetrakis[(methacryloyloxy)ethoxy]silaneâ^'Diethylene Glycol Dimethacrylate. Macromolecules, 2011, 44, 1792-1800.	4.8	14
424	Synthesis and characterization of pyrrole and thiophene functional polystyrenes via "click chemistry― Polymer Bulletin, 2011, 67, 609-621.	3.3	14
425	Synthesis, characterization, and properties of flexible magnetic nanocomposites of cobalt ferrite–polybenzoxazine–linear lowâ€density polyethylene. Journal of Applied Polymer Science, 2013, 128, 3726-3733.	2.6	14
426	Molecularly imprinted polymeric sensings layers <i>grafted from</i> aryl diazoniumâ€modified surfaces for electroanalytical applications. A mini review. Surface and Interface Analysis, 2014, 46, 1014-1020.	1.8	14
427	Synthesis and application of a novel poly-l-phenylalanine electroactive macromonomer as matrix for the biosensing of  Abused Drug' model. Polymer Chemistry, 2016, 7, 7304-7315.	3.9	14
428	CONDUCTING MULTIPHASE BLOCK COPOLYMERS OF POLYPYRROLE WITH POLYTETRAHYDROFURAN AND POLYTETRAHYDROFURAN-b-POLYSTYRENE. Journal of Macromolecular Science - Pure and Applied Chemistry, 2000, 37, 277-291.	2.2	13
429	Poly(p-phenylenes) with well-defined side chain polymers. Macromolecular Symposia, 2002, 183, 145-158.	0.7	13
430	Synthesis of Soluble Poly(<i>p</i> -phenylene methylene) from Tribenzylborate by Acid-Catalyzed Polymerization. Macromolecules, 2010, 43, 7993-7997.	4.8	13
431	Synthesis of polysulfone-b-polystyrene block copolymers by mechanistic transformation from condensation polymerization to free radical polymerization. Polymer Bulletin, 2013, 70, 2097-2109.	3.3	13
432	Photoinitiated Metal Free Living Radical and Cationic Polymerizations. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2017, 30, 385-392.	0.3	13

#	Article	IF	Citations
433	Mechanistic Transformations Involving Radical and Cationic Polymerizations. Chinese Journal of Polymer Science (English Edition), 2020, 38, 205-212.	3.8	13
434	Visible Light Induced Stepâ€Growth Polymerization by Substitution Reactions. Macromolecular Rapid Communications, 2021, 42, e2000686.	3.9	13
435	Expanding the Scope of 2D Black Phosphorus Catalysis to the Near-Infrared Light Initiated Free Radical Photopolymerization. ACS Macro Letters, 2021, 10, 679-683.	4.8	13
436	Diphenyl functional porphyrins and their metal complexes as visible-light photoinitiators for free-radical, cationic and thiol–ene polymerizations. Polymer Chemistry, 2020, 11, 4237-4249.	3.9	13
437	Synthesis and reactions of polymers with photoactive terminal groups—3. The use of radical promoted cationic polymerization for the synthesis of poly(n-butyl vinylether) with n-acyl dibenz(b,) Tj ETQq1 1 (b,)	0.7 &4 314	rg &∑ /Overlo
438	Title is missing!. Angewandte Makromolekulare Chemie, 1987, 154, 169-178.	0.2	12
439	Ionic polymeric peroxycarbamates. Journal of Applied Polymer Science, 1992, 44, 367-370.	2.6	12
440	Title is missing!. Angewandte Makromolekulare Chemie, 1994, 217, 79-89.	0.2	12
441	Addition - Fragmentation type initiators for cationic polymerization. Macromolecular Symposia, 1998, 132, 153-164.	0.7	12
442	Macromolecular Architecture Based on Anionically Prepared Poly(ethylene oxide) Macromonomers. Macromolecular Symposia, 2005, 226, 87-96.	0.7	12
443	New Photoinitiating Systems for Cationic Polymerization Acting at Near UV and Visible Range. Macromolecular Symposia, 2011, 308, 25-34.	0.7	12
444	Rationalizing the regioselectivity of cationic ring-opening polymerization of benzoxazines. European Polymer Journal, 2018, 105, 61-67.	5.4	12
445	Mussel-Inspired Coatings by Photoinduced Electron-Transfer Reactions: Photopolymerization of Dopamine under UV, Visible, and Daylight under Oxygen-Free Conditions. Macromolecules, 2021, 54, 5991-5999.	4.8	12
446	Title is missing!. Die Makromolekulare Chemie, 1992, 193, 1551-1556.	1.1	11
447	Initiation of Cationic Polymerization by Using Allyl Anilinium Salts in the Presence of Free Radical Initiators. Macromolecules, 2001, 34, 7608-7612.	4.8	11
448	Allyloxy isoquinolinium salts as initiators for cationic polymerization. European Polymer Journal, 2001, 37, 677-682.	5.4	11
449	Photoinduced $\langle i \rangle$ in situ $\langle li \rangle$ formation of clickable PEG hydrogels and their antibody conjugation. Designed Monomers and Polymers, 2015, 18, 129-136.	1.6	11
450	Photoinduced Cu(0)â€Mediated Atom Transfer Radical Polymerization. Macromolecular Chemistry and Physics, 2016, 217, 812-817.	2.2	11

#	Article	IF	CITATIONS
451	"Biomimetic-electrochemical-sensory-platform―for biomolecule free cocaine testing. Materials Science and Engineering C, 2018, 90, 211-218.	7.3	11
452	Functional Surfaces Constructed with Hyperbranched Copolymers as Optical Imaging and Electrochemical Cell Sensing Platforms. Macromolecular Chemistry and Physics, 2018, 219, 1700433.	2.2	11
453	Effect of clay on the dielectric properties of novel fluorinated methacrylate nanocomposites. Polymer Composites, 2019, 40, 3333-3341.	4.6	11
454	Influence of the cationic salt on free radical polymerization initiated by phenylazotriphenylmethane. Journal of Polymer Science, Polymer Letters Edition, 1984, 22, 103-106.	0.4	10
455	Synthesis of benzoin terminated poly(tetrahydrofuran)s. Angewandte Makromolekulare Chemie, 1996, 243, 143-149.	0.2	10
456	Synthesis of H-shaped complex macromolecular structures by combination of atom transfer radical polymerization, photoinduced radical coupling, ring-opening polymerization, and iniferter processes. Journal of Polymer Science Part A, 2013, 51, 4601-4607.	2.3	10
457	Synthesis, characterization, and hydrolytic degradation of graft copolymers of polystyrene and aliphatic polyesters. Designed Monomers and Polymers, 2013, 16, 233-240.	1.6	10
458	Graft Copolymers with Complex Polyether Structures: Poly(ethylene oxide)â€∢i>graftâ€Poly(isobutyl) Tj ETQc Macromolecular Chemistry and Physics, 2014, 215, 566-571.	0 0 0 rgBT 2.2	/Overlock 1 10
459	Poly(<i>p</i> phenylene) with Poly(ethylene glycol) Chains and Amino Groups as a Functional Platform for Controlled Drug Release and Radiotherapy. Macromolecular Bioscience, 2016, 16, 730-737.	4.1	10
460	Synthesis and self-assembly of fluorene-vinylene alternating copolymers in "Hairy-Rod―architecture: side chain – mediated tuning of conformation, microstructure and photophysical properties. Designed Monomers and Polymers, 2016, 19, 508-534.	1.6	10
461	Light-induced cross-linking and post-cross-linking modification of polyglycidol. Chemical Communications, 2018, 54, 1647-1650.	4.1	10
462	Controlled Synthesis of Block Copolymers by Mechanistic Transformation from Atom Transfer Radical Polymerization to Iniferter Process. Macromolecular Rapid Communications, 2019, 40, 1900109.	3.9	10
463	Chemiluminescenceâ€Induced Free Radical–Promoted Cationic Polymerization. Macromolecular Rapid Communications, 2020, 41, 2000004.	3.9	10
464	Dimethyl amino phenyl substituted silver phthalocyanine as a UV- and visible-light absorbing photoinitiator: <i>in situ</i> preparation of silver/polymer nanocomposites. Polymer Chemistry, 2021, 12, 1273-1285.	3.9	10
465	Highly conjugated visible and near-infrared light photoinitiating systems for radical and cationic polymerizations. Progress in Organic Coatings, 2021, 154, 106189.	3.9	10
466	Catalyzing the Ring-Opening Polymerization of 1,3-Benzoxazines via Thioamide from Renewable Sources. ACS Applied Polymer Materials, 2021, 3, 4203-4212.	4.4	10
467	Contemporary Approaches for Conventional and Lightâ∈Mediated Synthesis of Conjugated Heteroaromatic Polymers. Macromolecular Chemistry and Physics, 2021, 222, 2100334.	2.2	10
468	Highly conjugated isoindigo and quinoxaline dyes as sunlight photosensitizers for onium saltâ€photoinitiated cationic polymerization of epoxy resins. Polymer International, 0, , .	3.1	10

#	Article	IF	Citations
469	Formation of triphenylmethyl cation during the photolysis of phenylazotriphenyl methane: a laser flash photolysis study. Polymer International, 1998, 46, 331-335.	3.1	9
470	Structure and reactivity of addition fragmentation agents in photochemically and thermally induced cationic polymerization. Macromolecular Symposia, 2001, 174, 255-268.	0.7	9
471	Synthesis and Characterization of Polystyrene Possessing Triptycene Units in the Main Chain by Combination of ATRP and Click Chemistry Processes. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 809-815.	2.2	9
472	Controlled/Living Radical Polymerization in the Presence of Iniferters. RSC Polymer Chemistry Series, 2013, , 78-111.	0.2	9
473	Synthesis and characterization of polysulfone-g-poly(2-alkyl-2-oxazoline)s. Designed Monomers and Polymers, 2013, 16, 137-144.	1.6	9
474	Preparation of microporous organic polymer through Schiff base chemistry and its potential application. Designed Monomers and Polymers, 2015, 18, 567-573.	1.6	9
475	Catechol-Attached Polypeptide with Functional Groups as Electrochemical Sensing Platform for Synthetic Cannabinoids. ACS Applied Polymer Materials, 2020, 2, 172-177.	4.4	9
476	Light induced crosslinking of main chain polybenzoxazines. Polymer Chemistry, 2021, 12, 5781-5786.	3.9	9
477	Hollow microspherical carbazole-based conjugated polymers by photoinduced step-growth polymerization. Polymer Chemistry, 2021, 12, 4654-4660.	3.9	9
478	Synthesis of new polyamidoximes and their crosslinking by transition metal ions. Journal of Polymer Science Part A, 1989, 27, 3759-3767.	2.3	8
479	Studies on the Block Copolymerization of Methacrylo-Nitrile and Hexafluorobutylmethacrlate Using Phenylazo-Triphenylmethane as Thermal Iniferter. Journal of Macromolecular Science Part A, Chemistry, 1991, 28, 177-183.	0.3	8
480	Synthesis of conducting block and graft copolymers with polyether segments. Macromolecular Symposia, 2000, 157, 29-38.	0.7	8
481	PolymericN-allyl vinylpyridinium salts as addition-fragmentation type initiators for cationic polymerization. Polymer International, 2001, 50, 144-147.	3.1	8
482	Mechanical properties of conducting H-type polysiloxane-polypyrrole graft copolymers and polytetrahydrofuran-polypyrrole block copolymers. Journal of Applied Polymer Science, 2002, 86, 1663-1666.	2.6	8
483	Synthesis and Characterization of Conducting Copolymers of (S)-2-Methylbutyl-2-(3-thienyl)acetate with Pyrrole and Thiophene. Macromolecular Chemistry and Physics, 2003, 204, 1118-1122.	2.2	8
484	Pyrolysis Mass Spectrometry Analysis of Thiophene Capped Poly(Methyl Methacrylate) and Poly(Methylthienyl Methacrylate). Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 605-615.	2.2	8
485	A New Azo Initiator for the Synthesis of Polymers with Pyrene Terminal Groups. Polymer Bulletin, 2004, 52, 17.	3.3	8
486	Well-Defined Block Copolymers. , 2012, , 455-509.		8

#	Article	IF	CITATIONS
487	Synthesis of Poly(vinyl pyrrolidone)/Silver Nanoprism Composites through Simultaneous Photoinduced Polymerization and Electron Transfer Processes. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 511-513.	2.2	8
488	An efficient, heterogeneous, reusable atom transfer radical polymerization catalyst. Polymer International, 2018, 67, 55-60.	3.1	8
489	Fluorescent bioassay for SARS-CoV-2 detection using polypyrene-g-poly(ε-caprolactone) prepared by simultaneous photoinduced step-growth and ring-opening polymerizations. Mikrochimica Acta, 2022, 189, 202.	5.0	8
490	Photochemical Synthesis of Block Copolymers of Styrene and Methylmethacrylate with the Aid of 4,4 \hat{a} \in 2-Azo-Bis-(4-cyano-pentane-trichloroacetylamide). Journal of Macromolecular Science Part A, Chemistry, 1991, 28, 37-46.	0.3	7
491	Chiral liquid-crystalline block copolymers based on polyether and mesogenic polyacrylate blocks. Ferroelectrics, 1993, 148, 311-322.	0.6	7
492	Liquid crystalline block copolymers by sequential cationic or promoted cationic and freeâ€radical polymerizations. Macromolecular Symposia, 1996, 107, 85-97.	0.7	7
493	Conducting Copolymers of Random and Block Copolymers of Electroactive and Liquid Crystalline Monomers with Pyrrole and Thiophene. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 265-270.	2.2	7
494	Gas sensing property of a conducting copolymer. E-Polymers, 2007, 7, .	3.0	7
495	Direct pyrolysis mass spectrometry studies on thermal degradation characteristics of poly(phenylene) Tj ETQq1 1 157-162.	0.784314 3.6	rgBT /Over 7
496	THE USE OF ATOM TRANSFER RADICAL COUPLING REACTIONS FOR THE SYNTHESIS OF VARIOUS MACROMOLECULAR STRUCTURES. ACS Symposium Series, 2009, , 171-187.	0.5	7
497	Visible Light-Induced Atom Transfer Radical Polymerization for Macromolecular Syntheses. ACS Symposium Series, 2015, , 145-158.	0.5	7
498	Unconventional Sulfur Chemistries for Macromolecular Syntheses. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 1352-1365.	1.6	7
499	Simple Photochemical Route to Block Copolymers via Twoâ€Step Sequential Type II Photoinitiation. Macromolecular Chemistry and Physics, 2018, 219, 1700589.	2.2	7
500	Multi-mode Polymerizations Involving Photoinduced Radical Polymerization. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2018, 31, 719-725.	0.3	7
501	A robust strategy for the synthesis of miktoarm star copolymers by combination of ROP and photoinitiated free radical polymerization. European Polymer Journal, 2018, 109, 499-505.	5.4	7
502	Visible light induced one-pot synthesis of amphiphilic hyperbranched copolymers. Polymer, 2018, 158, 90-95.	3.8	7
503	A miniature and low-cost glucose measurement system. Biocybernetics and Biomedical Engineering, 2018, 38, 841-849.	5.9	7
504	Modular photoinduced grafting onto approach by ketene chemistry. Journal of Polymer Science Part A, 2019, 57, 274-280.	2.3	7

#	Article	IF	CITATIONS
505	Cellulose-based polyacetals by direct and sensitized photocationic ring-opening polymerization of levoglucosenyl methyl ether. Polymer Chemistry, 2020, 11, 6884-6889.	3.9	7
506	Light induced step-growth polymerization of Donor-Acceptor-Donor (DAD) type monomers based on thiophene $\hat{a} \in [1,2,5]$ Chalcogenazolo[3,4-f]-benzo [1,2,3] triazole $\hat{a} \in [1,2,5]$ Thiophene. European Polymer Journal, 2021, 161, 110831.	5.4	7
507	Selfâ€Healable and Recyclable Sulfur Rich Poly(vinyl chloride) by S–S Dynamic Bonding. Macromolecular Chemistry and Physics, 2023, 224, .	2.2	7
508	Title is missing!. Angewandte Makromolekulare Chemie, 1995, 224, 145-151.	0.2	6
509	Synthesis of polytetrahydrofuran with alkoxyamine end-groups and its use in block copolymerization with styrene. Designed Monomers and Polymers, 1998, 1, 121-128.	1.6	6
510	Photoinitiation of cationic polymerization by using poly(methyl phenyl silane) in combination with addition–fragmentation agents. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 130, 71-74.	3.9	6
511	Synthesis and characterization of N-phenylmaleimide-methylvinylisocyanate copolymers with polystyrene side chains. Polymer Bulletin, 2000, 44, 261-268.	3.3	6
512	Swelling and drying kinetics of polytetrahydrofuran and polytetrahydrofuran-poly (methyl) Tj ETQq0 0 0 rgBT /O	verlock 10 2.6) Tf 50 462 Td
513	Slow Release of Trapped Homopolymers from a Swelling Polymeric Gel: A Fluorescence Study. Journal of Macromolecular Science - Physics, 2008, 47, 942-954.	1.0	6
514	Poly(<i>p</i> phenylene methylene)â€based block copolymers by mechanistic transformation. Journal of Polymer Science Part A, 2011, 49, 4021-4026.	2.3	6
515	Synthesis, preparation and characterization of UV-cured methacrylated polysulfone-based membranes. Materials Today Communications, 2015, 5, 64-69.	1.9	6
516	Functional poly($\langle i \rangle p \langle i \rangle$ -phenylene)s as targeting and drug carrier materials. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 653-659.	3.4	6
517	Bioconjugation and Applications of Amino Functional Fluorescence Polymers. Macromolecular Bioscience, 2017, 17, 1600232.	4.1	6
518	Celluloseâ€Derived Functional Polyacetal by Cationic Ringâ€Opening Polymerization of Levoglucosenyl Methyl Ether. Angewandte Chemie, 2019, 131, 18663-18666.	2.0	6
519	Hydrophilicity Tunable Hyperbranched Polymers by Visible Light Induced Selfâ€Condensing Vinyl Polymerization. Macromolecular Chemistry and Physics, 2019, 220, 1900055.	2.2	6
520	Studies on the promoted polymerization of 4-vinylcyclohexendioxide. European Polymer Journal, 1985, 21, 25-27.	5.4	5
521	Photoinduced Block Copolymerization Using 4, $4\hat{a}\in^2$ -Azobis (4-Cyanopentanoic Acid) and Lead Tetraacetate. Journal of Macromolecular Science Part A, Chemistry, 1991, 28, 25-29.	0.3	5
522	Cationic polymerization of cyclohexene oxide initiated by a ternary system consisting of free radical photoinitiator, diphenyl acetylene and triphenylsulphonium salt. Polymer Bulletin, 1996, 37, 723-728.	3.3	5

#	Article	IF	Citations
523	Synthesis of Poly(isobutyl vinyl ether)-graft-Poly(ethylene oxide) Co-polymer with Pendant Methacrylate Functionality and Its Photo-curing Behavior. Designed Monomers and Polymers, 2009, 12, 265-272.	1.6	5
524	Synthesis of polystyrene- <i>b</i> -poly(ethylene glycol) block copolymers by radical exchange reactions of terminal RAFT agents. Designed Monomers and Polymers, 2014, 17, 238-244.	1.6	5
525	Synthesis, Characterization and Photoinduced Cross-linking of Functionalized Poly(cyclohexyl) Tj ETQq1 1 0.784 Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2015, 28, 769-774.	314 rgBT / 0.3	Overlock 10 5
526	pHâ€Responsive Micelleâ€Forming Amphiphilic Triblock Copolymers. Macromolecular Chemistry and Physics, 2020, 221, 2000109.	2.2	5
527	Surface modification of polybenzoxazines by electrochemical hydroquinone-quinone switch. European Polymer Journal, 2021, 142, 110157.	5.4	5
528	Photoinduced Controlled/Living Polymerizations. Angewandte Chemie, 2022, 134, .	2.0	5
529	Synthesis of Block Copolymers by Mechanistic Transformation from Reversible Complexation Mediated Living Radical Polymerization to the Photoinduced Radical Oxidation/Addition/Deactivation Process. ACS Macro Letters, 2022, 11, 342-346.	4.8	5
530	Synthesis and reactions of polymers with photoactive terminal groups—4. the use of oxocarbenium polymerization for the synthesis of poly(α-methylstyrene) with N-acyl dibenz[b,f]azepine terminal units. European Polymer Journal, 1992, 28, 717-720.	5.4	4
531	The effect of long-term ambient aging on the mechanical properties of conducting polysiloxane-polypyrrole graft copolymers. Chemical Engineering Communications, 2003, 190, 823-830.	2.6	4
532	Comparative study of liquid-crystalline ordering in a monomer, linear polymer, and graft copolymer by the photon transmission technique. Phase Transitions, 2003, 76, 991-998.	1.3	4
533	Synthesis and Characterization of Conducting Copolymers of Menthyl Ester of 3-Thiophene Acetic Acid with Pyrrole. Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 251-264.	2.2	4
534	Synthesis of block copolymers by mechanistic transformation from photoinitiated cationic polymerization to a RAFT process. Polymer Chemistry, 2017, 8, 7307-7310.	3.9	4
535	Photoinduced Metal Free Strategies for Atom Transfer Radical Polymerization. ACS Symposium Series, 2018, , 263-271.	0.5	4
536	Exfoliated black phosphorous-mediated CuAAC chemistry for organic and macromolecular synthesis under white LED and near-IR irradiation. Beilstein Journal of Organic Chemistry, 2021, 17, 2477-2487.	2.2	4
537	Directly and Indirectly Acting Photoinitiating Systems for Ringâ€Opening Polymerization of Ĭµâ€Caprolactone. ChemPhotoChem, 2021, 5, 1089-1093.	3.0	4
538	A New Polymeric Peroxycarbamate: Synthesis, Decomposition and Its Use of Polymerization Initiator for Methylstyrene. Polymer Journal, 1989, 21, 253-257.	2.7	3
539	Functional Polyamides: 4. Synthesis and Characterization of Poly(Amide-Sulfones). Journal of Macromolecular Science - Pure and Applied Chemistry, 1992, 29, 293-301.	2.2	3
540	Functional polyamides. 3. Synthesis and chelating properties of a new poly(amide thioether). Angewandte Makromolekulare Chemie, 1992, 195, 89-95.	0.2	3

#	Article	IF	CITATIONS
541	Photoactive Polytetrahydrofuran Macroinimer. Journal of Macromolecular Science - Pure and Applied Chemistry, 1997, 34, 383-388.	2.2	3
542	Electroiniated cationic polymerization in the presence of addition-fragmentation agents. Polymer Bulletin, 2002, 49, 217-223.	3.3	3
543	Initiation of Cationic Polymerization by Addition-Fragmentation Reactions: Bifunctional Addition-Fragmentation Agents as Photoinitiators for Cationic Polymerization. ACS Symposium Series, 2003, , 187-201.	0.5	3
544	Synthesis, Characterization, and Electrochromic Properties of Conducting Copolymers of 2â€[(3â€Thienylcarbonyl)oxy]ethyl 3â€Thiophene Carboxylate with Thiophene and Pyrrole. Journal of Macromolecular Science - Pure and Applied Chemistry, 2004, 41, 937-947.	2.2	3
545	Studies on the Preparation of Telechelic Polymers by Atom Transfer Radical Polymerization and Cross Coupling Processes. E-Polymers, 2006, 6, .	3.0	3
546	Characteristics of dual-type electrochromic devices based on poly(ethylene oxide) copolymers. Polymer International, 2007, 56, 674-678.	3.1	3
547	Preparation of super HIPS via nanocomposite assemblies in the presence of toughener- intercalant. E-Polymers, 2008, 8, .	3.0	3
548	Film formation of poly (methyl methacrylate) latex with pyrene functional poly (divinylbenzene) microspheres prepared by click chemistry. Polymer Composites, 2011, 32, 869-881.	4.6	3
549	A Simple Photochemical Route to Hyperbranched Polymers by Using Photolatent Inimer. Macromolecular Chemistry and Physics, 2021, 222, 2000408.	2.2	3
550	Curable benzoxazine/siloxane hybrid networks from renewable phenolics and glycerol. European Polymer Journal, 2022, 174, 111329.	5.4	3
551	Cationic polymerization initiated by substituted vinyl cations in dichloromethane solution. Die Makromolekulare Chemie Rapid Communications, 1989, 10, 137-144.	1.1	2
552	The Effect of Cationic Salt on Photoinitiated Free Radical Polymerization Using Polysilanes. Journal of Macromolecular Science - Pure and Applied Chemistry, 1995, 32, 1257-1262.	2.2	2
553	Synthesis of liquid crystalline graft and block copolymers by sequential cationic and free-radical polymerizations. Designed Monomers and Polymers, 1999, 2, 259-265.	1.6	2
554	Synthesis and characterization of dienic salts as additionâ€"fragmentation type initiators for cationic polymerization. Designed Monomers and Polymers, 2001, 4, 381-390.	1.6	2
555	Characterization and Potential Applications of Immobilized Glucose Oxidase and Polyphenol Oxidase. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 801-808.	2.2	2
556	High temperature pyrolysis of poly(phenylene vinylene)s with poly($\hat{l}\mu$ -caprolactone) or polystyrene side chains. Journal of Thermal Analysis and Calorimetry, 2009, 98, 527-532.	3.6	2
557	Complex macromolecular structures from stable radical containing block copolymers. Journal of Polymer Science, 2020, 58, 62-69.	3.8	2
558	N â∈Acyl Dibenzazepine Chemistry as Versatile Approach for Photoreversible Thiolâ€Ene Networks. Macromolecular Rapid Communications, 2020, 41, 2000369.	3.9	2

#	Article	IF	CITATIONS
559	Grafting onto preformed polyester network using thermolabile azo groups. Journal of Applied Polymer Science, 1990, 41, 1569-1573.	2.6	1
560	Electroinitiated polymerization of 2-chloroethylvinyl ether. Designed Monomers and Polymers, 1998, 1, 245-250.	1.6	1
561	Photoinitiated cationic polymerization using ally Isulfonium salts. Substituent effect on the initiator activity. E-Polymers, 2001,1,.	3.0	1
562	Synthesis and Liquid Crystalline Behavior of Random Copolymer of Poly(ethylene oxide) Macromonomer and Liquid Crystalline Monomer by the Photon Transmission Technique. Journal of Macromolecular Science - Pure and Applied Chemistry, 2005, 42, 1573-1588.	2.2	1
563	(Hetero) Arylene Polymers Having Polystyrene Chains as Branches. Macromolecular Symposia, 2008, 263, 38-46.	0.7	1
564	Macromol. Rapid Commun. 23/2011. Macromolecular Rapid Communications, 2011, 32, 1905-1905.	3.9	1
565	A versatile approach for the preparation of endâ€functional polymers and block copolymers by stable radical exchange reactions. Journal of Polymer Science Part A, 2019, 57, 2387-2395.	2.3	1
566	A Novel Photoinduced Ligation Approach for Cross‣inking Polymerization, Polymer Chainâ€End Functionalization, and Surface Modification Using Benzoyl Azides. Macromolecular Rapid Communications, 2021, 42, 2100166.	3.9	1
567	Phenacyl Phenothiazinium Salt as a New Broadâ€Wavelengthâ€Absorbing Photoinitiator for Cationic and Free Radical Polymerizations. Angewandte Chemie, 2021, 133, 17054-17058.	2.0	1
568	Polymeric Nâ€allyl vinylpyridinium salts as addition–fragmentation type initiators for cationic polymerization. Polymer International, 2001, 50, 144-147.	3.1	1
569	Phenacyl Bromide as a Single Component Photoinitiator: Photoinduced Stepâ€Growth Polymerization of Nâ€Methylpyrrole and Nâ€Methylindole. Angewandte Chemie, 0, , .	2.0	1
570	Polycondensation versus metal template condensation of 2,2′-ethylenedithiodianiline with glyoxal. Die Makromolekulare Chemie, 1990, 191, 2881-2888.	1.1	0
571	6th International Symposium on ADVANCED POLYMERS VIA MACROMOLECULAR ENGINEERING (APME-6). Polymer Bulletin, 2005, 53, 435-436.	3.3	0
572	The Photopolymer Science and Technology Award. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2018, 31, 5-7.	0.3	0
573	Complex macromolecular structures from stable radical containing block copolymers. Journal of Polymer Science, 2020, 58, 62-69.	3.8	0