Yinggan Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5956038/publications.pdf

Version: 2024-02-01

567144 501076 46 838 15 28 citations h-index g-index papers 46 46 46 839 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A new method for solving variable coefficients fractional differential equations based on a hybrid of Bernoulli polynomials and block pulse functions. Mathematical Methods in the Applied Sciences, 2023, 46, 8054-8073.	1.2	2
2	Identification of linear time-varying fractional order systems using block pulse functions based on repetitive principle. ISA Transactions, 2022, 123, 218-229.	3.1	3
3	More relaxed stability analysis and positivity analysis for positive polynomial fuzzy systems via membership functions dependent method. Fuzzy Sets and Systems, 2022, 432, 111-131.	1.6	7
4	Estimation of Domain of Attraction for Discrete-Time Positive Interval Type-2 Polynomial Fuzzy Systems With Input Saturation. IEEE Transactions on Fuzzy Systems, 2022, 30, 397-411.	6.5	7
5	Stabilization Analysis and Impulsive Controller Design for Positive Interval Type-2 Polynomial Fuzzy Systems. IEEE Transactions on Fuzzy Systems, 2022, 30, 3952-3966.	6.5	5
6	Solving fractional differential equation using blockâ€pulse functions and Bernstein polynomials. Mathematical Methods in the Applied Sciences, 2021, 44, 5501-5519.	1.2	1
7	Numerical solution of fractional differential equations using hybrid Bernoulli polynomials and block pulse functions. Mathematical Sciences, 2021, 15, 293-304.	1.0	3
8	Solving fractional differential equations using collocation method based onhybrid of block-pulse functions and Taylor polynomials. Turkish Journal of Mathematics, 2021, 45, 1065-1078.	0.3	2
9	Parameter Identification of Fractional Order Systems Using a Hybrid of Bernoulli Polynomials and Block Pulse Functions. IEEE Access, 2021, 9, 40178-40186.	2.6	2
10	Operational matrix based set-membership method for fractional order systems parameter identification. Journal of the Franklin Institute, 2021, 358, 10141-10164.	1.9	2
11	Stability Analysis and Estimation of Domain of Attraction for Positive Polynomial Fuzzy Systems With Input Saturation. IEEE Transactions on Fuzzy Systems, 2020, 28, 1723-1736.	6. 5	11
12	Parameter identification of fractional order systems with nonzero initial conditions based on block pulse functions. Measurement: Journal of the International Measurement Confederation, 2020, 158, 107684.	2.5	14
13	Design and Implementation of Novel Fractional-Order Controllers for Stabilized Platforms. IEEE Access, 2020, 8, 93133-93144.	2.6	14
14	CONTINUOUS-TIME FRACTIONAL ORDER LINEAR SYSTEMS IDENTIFICATION USING CHEBYSHEV WAVELET. EurasianUnionofScientists, 2020, 6, 23-28.	0.0	0
15	Image thresholding based on gray levelâ€fuzzy local entropy histogram. IEEJ Transactions on Electrical and Electronic Engineering, 2018, 13, 627-631.	0.8	4
16	Application of ELM–Hammerstein model to the identification of solid oxide fuel cells. Neural Computing and Applications, 2018, 29, 401-411.	3.2	13
17	Image Thresholding Segmentation Based on Two Dimensional Histogram Using Gray Level and Local Entropy Information. IEEE Access, 2018, 6, 5269-5275.	2.6	26
18	Ship roll motion prediction based on â, "1 regularized extreme learning machine. PLoS ONE, 2018, 13, e0206476.	1.1	4

#	Article	IF	Citations
19	Nonlocal Means Two Dimensional Histogram-Based Image Segmentation via Minimizing Relative Entropy. Entropy, 2018, 20, 827.	1.1	7
20	Optimal fractional order PID controller design for automatic voltage regulator system based on reference model using particle swarm optimization. International Journal of Machine Learning and Cybernetics, 2017, 8, 1595-1605.	2.3	67
21	Identification of fractional-order systems with time delays using block pulse functions. Mechanical Systems and Signal Processing, 2017, 91, 382-394.	4.4	47
22	Parameter identification of fractional-order chaotic system with time delay via multi-selection differential evolution. Systems Science and Control Engineering, 2017, 5, 42-48.	1.8	14
23	A changing forgetting factor RLS for online identification of nonlinear systems based on ELM–Hammerstein model. Neural Computing and Applications, 2017, 28, 813-827.	3.2	14
24	Image Bi-Level Thresholding Based on Gray Level-Local Variance Histogram. Entropy, 2017, 19, 191.	1.1	28
25	Chaotic system identification using Wienerâ€LSSVM model. IEEJ Transactions on Electrical and Electronic Engineering, 2016, 11, 499-507.	0.8	1
26	Convolutional neural network with gradient information for image super-resolution., 2016,,.		0
27	Ill-posed Echo State Network based on L-curve Method for Prediction of Blast Furnace Gas Flow. Neural Processing Letters, 2016, 43, 97-113.	2.0	18
28	Identification and control of nonlinear system based on Laguerre-ELM Wiener model. Communications in Nonlinear Science and Numerical Simulation, 2016, 38, 192-205.	1.7	15
29	Modeling of the hot metal silicon content in blast furnace using support vector machine optimized by an improved particle swarm optimizer. Neural Computing and Applications, 2016, 27, 1451-1461.	3.2	19
30	Optimal gray PID controller design for automatic voltage regulator system via imperialist competitive algorithm. International Journal of Machine Learning and Cybernetics, 2016, 7, 229-240.	2.3	29
31	Nonlinear system identification using least squares support vector machine tuned by an adaptive particle swarm optimization. International Journal of Machine Learning and Cybernetics, 2015, 6, 981-992.	2.3	15
32	Identification of Wiener Model Using Least Squares Support Vector Machine Optimized by Adaptive Particle Swarm Optimization. Journal of Control, Automation and Electrical Systems, 2015, 26, 609-615.	1.2	9
33	Identification of chaotic system using Hammerstein-ELM model. Nonlinear Dynamics, 2015, 81, 1081-1095.	2.7	13
34	Parameter identification of fractional order systems using block pulse functions. Signal Processing, 2015, 107, 272-281.	2.1	63
35	A time-varying forgetting factor stochastic gradient combined with Kalman filter algorithm for parameter identification of dynamic systems. Nonlinear Dynamics, 2014, 78, 1943-1952.	2.7	14
36	Wiener model identification of blast furnace ironmaking process based on Laguerre filter and linear programming support vector regression. , 2014 , , .		2

#	ARTICLE	IF	CITATION
37	Identification of nonlinear system using extreme learning machine based Hammerstein model. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 3171-3183.	1.7	42
38	Identification of Hammerstein model using functional link artificial neural network. Neurocomputing, 2014, 142, 419-428.	3.5	42
39	Modified Fuzzy Linear Discriminant Analysis for Threshold Selection. Circuits, Systems, and Signal Processing, 2013, 32, 711-726.	1.2	1
40	Fuzzy PID control of epileptiform spikes in a neural mass model. Nonlinear Dynamics, 2013, 71, 13-23.	2.7	24
41	Fractional order sliding mode controller design for antilock braking systems. Neurocomputing, 2013, 111, 122-130.	3.5	104
42	An Artificial Bee Colony Optimization Algorithm Based on Multi-exchange Neighborhood., 2012,,.		10
43	Parameter identification of commensurate fractional-order chaotic system via differential evolution. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 457-464.	0.9	62
44	Application of a new image segmentation method to detection of defects in castings. International Journal of Advanced Manufacturing Technology, 2009, 43, 431-439.	1.5	39
45	Segmentation of Microscopic Images for Counting Leukocytes. , 2008, , .		13
46	Multi-resolution image segmentation based on Gaussian mixture model. Journal of Systems Engineering and Electronics, 2006, 17, 870-874.	1.1	6