
Kazuo Okanoya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5955947/publications.pdf Version: 2024-02-01

Κλ7110 ΟκλΝΟΥΛ

#	Article	IF	CITATIONS
1	Twitter evolution: converging mechanisms in birdsong and human speech. Nature Reviews Neuroscience, 2010, 11, 747-759.	10.2	412
2	Songs to syntax: the linguistics of birdsong. Trends in Cognitive Sciences, 2011, 15, 113-121.	7.8	335
3	The Bengalese Finch: A Window on the Behavioral Neurobiology of Birdsong Syntax. Annals of the New York Academy of Sciences, 2004, 1016, 724-735.	3.8	185
4	Stepwise acquisition of vocal combinatorial capacity in songbirds and human infants. Nature, 2013, 498, 104-108.	27.8	177
5	Adult bengalese finches (Lonchura striata var.domestica) require real-time auditory feedback to produce normal song syntax. Journal of Neurobiology, 1997, 33, 343-356.	3.6	175
6	Cross Fostering Experiments Suggest That Mice Songs Are Innate. PLoS ONE, 2011, 6, e17721.	2.5	125
7	On-line Assessment of Statistical Learning by Event-related Potentials. Journal of Cognitive Neuroscience, 2008, 20, 952-964.	2.3	120
8	Acoustical and Syntactical Comparisons between Songs of the White-backed Munia (Lonchura striata) and Its Domesticated Strain, the Bengalese Finch (Lonchura striata var. domestica). Zoological Science, 1999, 16, 319-326.	0.7	118
9	Song Syntax in Bengalese Finches: Proximate and Ultimate Analyses. Advances in the Study of Behavior, 2004, 34, 297-346.	1.6	110
10	The rate of telomere loss is related to maximum lifespan in birds. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160445.	4.0	109
11	Rhythmic synchronization tapping to an audio–visual metronome in budgerigars. Scientific Reports, 2011, 1, 120.	3.3	101
12	Auditory perception of conspecific and heterospecific vocalizations in birds: Evidence for special processes Journal of Comparative Psychology (Washington, D C: 1983), 1992, 106, 20-28.	0.5	93
13	Lesion of a higher-order song nucleus disrupts phrase level complexity in Bengalese finches. NeuroReport, 2000, 11, 2091-2095.	1.2	88
14	Birdsong neurolinguistics. NeuroReport, 2012, 23, 139-145.	1.2	87
15	Spontaneous vocal differentiation of coo-calls for tools and food in Japanese monkeys. Neuroscience Research, 2003, 45, 383-389.	1.9	85
16	Identification of gonadotropin-inhibitory hormone in the zebra finch (Taeniopygia guttata): Peptide isolation, cDNA cloning and brain distribution. Peptides, 2010, 31, 816-826.	2.4	85
17	Partial lesions in the anterior forebrain pathway affect song production in adult Bengalese finches. NeuroReport, 2001, 12, 353-358.	1.2	72
18	Perceptual organization of acoustic stimuli by budgerigars (Melopsittacus undulatus): II. Vocal signals Journal of Comparative Psychology (Washington, D C: 1983), 1987, 101, 367-381.	0.5	70

#	Article	IF	CITATIONS
19	Speech perception by budgerigars(Melopsittacus undulatus): The voiced-voiceless distinction. Perception & Psychophysics, 1989, 46, 65-71.	2.3	69
20	Male Zebra Finches and Bengalese Finches Emit Directed Songs to the Video Images of Conspecific Females Projected onto a TFT Display. Zoological Science, 1999, 16, 63-70.	0.7	64
21	Evaluation of Pax6 Mutant Rat as a Model for Autism. PLoS ONE, 2010, 5, e15500.	2.5	62
22	Phase-Specific Vocalizations of Male Mice at the Initial Encounter during the Courtship Sequence. PLoS ONE, 2016, 11, e0147102.	2.5	62
23	Cognitive bias in rats evoked by ultrasonic vocalizations suggests emotional contagion. Behavioural Processes, 2016, 132, 5-11.	1.1	62
24	The naked truth: a comprehensive clarification and classification of current â€~myths' in naked moleâ€rat biology. Biological Reviews, 2022, 97, 115-140.	10.4	62
25	Perceptual organization of acoustic stimuli by budgerigars (Melopsittacus undulatus): I. Pure tones Journal of Comparative Psychology (Washington, D C: 1983), 1987, 101, 139-149.	0.5	61
26	A Bird's Eye View of Human Language Evolution. Frontiers in Evolutionary Neuroscience, 2012, 4, 5.	3.7	59
27	Colony differences in auditory thresholds in the canary (Serinus canarius). Journal of the Acoustical Society of America, 1985, 78, 1170-1176.	1.1	58
28	Tool-Use Training in a Species of Rodent: The Emergence of an Optimal Motor Strategy and Functional Understanding. PLoS ONE, 2008, 3, e1860.	2.5	58
29	Early Rearing Conditions Affect the Development of Body Size and Song in Bengalese Finches. Ethology, 2006, 112, 1071-1078.	1.1	57
30	The Emergence of Hierarchical Structure in Human Language. Frontiers in Psychology, 2013, 4, 71.	2.1	54
31	Feedback-based error monitoring processes during musical performance: An ERP study. Neuroscience Research, 2008, 61, 120-128.	1.9	53
32	Complex Sequencing Rules of Birdsong Can be Explained by Simple Hidden Markov Processes. PLoS ONE, 2011, 6, e24516.	2.5	51
33	Statistical segmentation of tone sequences activates the left inferior frontal cortex: A near-infrared spectroscopy study. Neuropsychologia, 2008, 46, 2787-2795.	1.6	50
34	Effects of Preterm Birth on Intrinsic Fluctuations in Neonatal Cerebral Activity Examined Using Optical Imaging. PLoS ONE, 2013, 8, e67432.	2.5	49
35	Song Learning in Wild and Domesticated Strains of Whiteâ€Rumped Munia, <i>Lonchura striata</i> , Compared by Crossâ€Fostering Procedures: Domestication Increases Song Variability by Decreasing Strainâ€Specific Bias. Ethology, 2010, 116, 396-405.	1.1	48
36	Antiphonal Vocalization of a Subterranean Rodent, the Naked Mole-Rat (Heterocephalus glaber). Ethology, 2007, 113, 703-710.	1.1	47

IF

CITATIONS

37	Hippocampus lesions induced deficits in social and spatial recognition in Octodon degus. Behavioural Brain Research, 2011, 219, 302-309.	2.2	47
38	Semi-Automatic Classification of Birdsong Elements Using a Linear Support Vector Machine. PLoS ONE, 2014, 9, e92584.	2.5	47
39	Comparison of travelingâ€subject and <scp>ComBat</scp> harmonization methods for assessing structural brain characteristics. Human Brain Mapping, 2021, 42, 5278-5287.	3.6	47
40	Detection of gaps in noise by budgerigars (Melopsittacus undulatus) and zebra finches (Poephila) Tj ETQq0 0 0	rgBT /Over 2.0	rlock 10 Tf
41	Statistical and Prosodic Cues for Song Segmentation Learning by Bengalese Finches (<i>Lonchura) Tj ETQq1 1</i>	0.784314 r 1.1	rgBT /Overl
42	Convergent Differential Regulation of Parvalbumin in the Brains of Vocal Learners. PLoS ONE, 2012, 7, e29457.	2.5	45
43	Brains for birds and babies: Neural parallels between birdsong and speech acquisition. Neuroscience and Biobehavioral Reviews, 2017, 81, 225-237.	6.1	45
44	Oxytocin inhibits male sexual behavior in prairie voles. Pharmacology Biochemistry and Behavior, 1991, 39, 219-222.	2.9	44
45	Hearing in the swamp sparrow, Melospiza georgiana, and the song sparrow, Melospiza melodia. Animal Behaviour, 1988, 36, 726-732.	1.9	42
46	Hearing in the starling (Sturnus vulgaris): Absolute thresholds and critical ratios. Bulletin of the Psychonomic Society, 1986, 24, 462-464.	0.2	40
47	Perception of distance calls by budgerigars (Melopsittacus undulatus) and zebra finches (Poephila) Tj ETQq1 1	0.784314 r 0.5	rgBT /Overl 40
48	USVSEG: A robust method for segmentation of ultrasonic vocalizations in rodents. PLoS ONE, 2020, 15, e0228907.	2.5	39
49	On-line statistical segmentation of a non-speech auditory stream in neonates as demonstrated by event-related brain potentials. Developmental Science, 2011, 14, 1100-1106.	2.4	37
50	Temporal modulation transfer functions in the European Starling (Sturnus vulgaris): I. Psychophysical modulation detection thresholds. Hearing Research, 1991, 52, 1-11.	2.0	36
51	Effect of testosterone on the distribution of vasotocin immunoreactivity in the brain of the zebra finch, Taeniopygia guttata castanotis. Life Sciences, 1999, 65, 1663-1670.	4.3	36
52	Visual statistical learning of shape sequences: An ERP study. Neuroscience Research, 2009, 64, 185-190.	1.9	35
53	Mice modulate ultrasonic calling bouts according to sociosexual context. Royal Society Open Science, 2018, 5, 180378.	2.4	35
54	Human speech- and reading-related genes display partially overlapping expression patterns in the marmoset brain. Brain and Language, 2014, 133, 26-38.	1.6	34

ARTICLE

#

#	Article	IF	CITATIONS
55	A rhythm landscape approach to the developmental dynamics of birdsong. Journal of the Royal Society Interface, 2015, 12, 20150802.	3.4	34
56	Statistical learning in songbirds: from self-tutoring to song culture. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160053.	4.0	34
57	Context-dependent song amplitude control in Bengalese finches. NeuroReport, 2003, 14, 521-524.	1.2	33
58	Expression analysis of cadherins in the songbird brain: Relationship to vocal system development. Journal of Comparative Neurology, 2008, 508, 329-342.	1.6	33
59	Defects in Ultrasonic Vocalization of Cadherin-6 Knockout Mice. PLoS ONE, 2012, 7, e49233.	2.5	33
60	Language evolution and an emergent property. Current Opinion in Neurobiology, 2007, 17, 271-276.	4.2	32
61	Categorical and dimensional perceptions in decoding emotional facial expressions. Cognition and Emotion, 2012, 26, 587-601.	2.0	32
62	The impact of domestication on fearfulness: A comparison of tonic immobility reactions in wild and domesticated finches. Behavioural Processes, 2013, 100, 58-63.	1.1	32
63	Infants prefer the faces of strangers or mothers to morphed faces: an uncanny valley between social novelty and familiarity. Biology Letters, 2012, 8, 725-728.	2.3	31
64	Hearing and vocalizations in hybrid Waterslager-Roller canaries (Serinus canarius). Hearing Research, 1990, 46, 271-275.	2.0	29
65	Sex Differences in the Telencephalic Song Control Circuitry in Bengalese Finches (Lonchura striata) Tj ETQq1 1 0	.784314 rg 0.7	gBT_Overlock
66	Operant conditioning of small birds for acoustic discrimination. Journal of Ethology, 1985, 3, 5-9.	0.8	28
67	Sex differences in song perception in Bengalese finches measured by the cardiac response. Animal Behaviour, 2003, 65, 123-130.	1.9	28
68	Broad cortical activation in response to tactile stimulation in newborns. NeuroReport, 2012, 23, 373-377.	1.2	28
69	What do animals learn in artificial grammar studies?. Neuroscience and Biobehavioral Reviews, 2017, 81, 238-246.	6.1	28
70	Obtaining acoustic similarity measures from animals: A method for species comparisons. Journal of the Acoustical Society of America, 1988, 83, 1690-1693.	1.1	27
71	Acoustical and perceptual structures of sexually dimorphic distance calls in Bengalese finches (Lonchura striata domestica) Journal of Comparative Psychology (Washington, D C: 1983), 1993, 107, 386-394.	0.5	27
72	Sexual communication and domestication may give rise to the signal complexity necessary for the emergence of language: An indication from songbird studies. Psychonomic Bulletin and Review, 2017, 24, 106-110.	2.8	27

#	Article	IF	CITATIONS
73	Molecular characterization of the song control nucleus HVC in Bengalese finch brain. Brain Research, 2010, 1360, 56-76.	2.2	26
74	Emotional attention modulates microsaccadic rate and direction. Psychological Research, 2014, 78, 166-179.	1.7	26
75	A neural network model for generating complex birdsong syntax. Biological Cybernetics, 2007, 97, 441-448.	1.3	25
76	Naked Moleâ€Rat is Sensitive to Social Hierarchy Encoded in Antiphonal Vocalization. Ethology, 2009, 115, 823-831.	1.1	25
77	Ontogeny of sexually dimorphic distance calls in bengalese finches (Lonchura domestica). Journal of Ethology, 1991, 9, 41-46.	0.8	24
78	Interaction between musical emotion and facial expression as measured by event-related potentials. Neuropsychologia, 2013, 51, 500-505.	1.6	24
79	Hierarchical emergence of sequence sensitivity in the songbird auditory forebrain. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2016, 202, 163-183.	1.6	24
80	Rats show adaptive choice in a metacognitive task with high uncertainty Journal of Experimental Psychology Animal Learning and Cognition, 2017, 43, 109-118.	0.5	24
81	Syringeal Specialization of Frequency Control during Song Production in the Bengalese Finch (Lonchura striata domestica). PLoS ONE, 2012, 7, e34135.	2.5	23
82	A simple explanation for the evolution of complex song syntax in Bengalese finches. Biology Letters, 2013, 9, 20130842.	2.3	23
83	Perception of temporal properties in self-generated songs by Bengalese finches (Lonchura striata var.) Tj ETQq1 1	0,78431	4 rgBT /Overl
84	Left-side dominance for song discrimination in Bengalese finches (Lonchura striata var. domestica). Animal Cognition, 2001, 4, 241-245.	1.8	22
85	Variability in preference for conspecific songs with syntactical complexity in female Bengalese Finches: towards an understanding of song evolution. Ornithological Science, 2008, 7, 75-84.	0.5	22
86	Decision-Making Based on Emotional Images. Frontiers in Psychology, 2011, 2, 311.	2.1	22
87	Differential androgen receptor expression and <scp>DNA</scp> methylation state in striatum song nucleus Area X between wild and domesticated songbird strains. European Journal of Neuroscience, 2013, 38, 2600-2610.	2.6	22
88	Neural Substrates for String-Context Mutual Segmentation: A Path to Human Language. , 2007, , 421-434.		22
89	Perceptual chunking in the self-produced songs of Bengalese finches (Lonchura striata var.) Tj ETQq1 1 0.784314	rgBT /Ov	erlock 10 Tf. 21
90	DETECTION OF SPECIES-SPECIFIC CALLS IN NOISE BY ZEBRA FINCHESPOEPHILA GUTTATAAND BUDGERIGARSMELOPSITTACUS UNDULATUS:TIME OF FREQUENCY DOMAIN?. Bioacoustics, 1991, 3, 163-172.	1.7	20

#	Article	IF	CITATIONS
91	Population coding of song element sequence in the Bengalese finch HVC. European Journal of Neuroscience, 2008, 27, 3273-3283.	2.6	20
92	Ethological data mining: an automata-based approach to extract behavioral units and rules. Data Mining and Knowledge Discovery, 2009, 18, 446-471.	3.7	20
93	Songbirds and humans apply different strategies in a sound sequence discrimination task. Frontiers in Psychology, 2013, 4, 447.	2.1	20
94	The integration hypothesis of human language evolution and the nature of contemporary languages. Frontiers in Psychology, 2014, 5, 564.	2.1	20
95	Neural basis of decision making guided by emotional outcomes. Journal of Neurophysiology, 2015, 113, 3056-3068.	1.8	20
96	Segmentation of expiratory and inspiratory sounds in baby cry audio recordings using hidden Markov models. Journal of the Acoustical Society of America, 2011, 130, 2969-2977.	1.1	19
97	Decreased Right Temporal Activation and Increased Interhemispheric Connectivity in Response to Speech in Preterm Infants at Term-Equivalent Age. Frontiers in Psychology, 2013, 4, 94.	2.1	19
98	Automatic Recognition of Element Classes and Boundaries in the Birdsong with Variable Sequences. PLoS ONE, 2016, 11, e0159188.	2.5	19
99	Temporal integration in zebra finches (Poephila guttata). Journal of the Acoustical Society of America, 1990, 87, 2782-2784.	1.1	18
100	Neural correlates of song complexity in Bengalese finch high vocal center. NeuroReport, 2004, 15, 1359-1363.	1.2	18
101	Trade-offs and correlations among multiple song features in the Bengalese Finch. Ornithological Science, 2006, 5, 77-84.	0.5	18
102	Evolution and diversity in avian vocal system: An Evoâ€Devo model from the morphological and behavioral perspectives. Development Growth and Differentiation, 2009, 51, 355-367.	1.5	18
103	Potential role of monkey inferior parietal neurons coding action semantic equivalences as precursors of parts of speech. Social Neuroscience, 2010, 5, 105-117.	1.3	18
104	Very Early Development of Nucleus Taeniae of the Amygdala. Brain, Behavior and Evolution, 2013, 81, 12-26.	1.7	18
105	Contextual Modulation of Physiological and Psychological Responses Triggered by Emotional Stimuli. Frontiers in Psychology, 2013, 4, 212.	2.1	18
106	The implicit processing of categorical and dimensional strategies: an fMRI study of facial emotion perception. Frontiers in Human Neuroscience, 2013, 7, 551.	2.0	18
107	Domestication changes innate constraints for birdsong learning. Behavioural Processes, 2014, 106, 91-97.	1.1	18
108	Individual differences in heart rate variability are associated with the avoidance of negative emotional events. Biological Psychology, 2014, 103, 322-331.	2.2	18

#	Article	IF	CITATIONS
109	Auditory-vocal coupling in the naked mole-rat, a mammal with poor auditory thresholds. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2018, 204, 905-914.	1.6	18
110	Dynamic Expression of Cadherins Regulates Vocal Development in a Songbird. PLoS ONE, 2011, 6, e25272.	2.5	17
111	Shyness in Early Infancy: Approach-Avoidance Conflicts in Temperament and Hypersensitivity to Eyes during Initial Gazes to Faces. PLoS ONE, 2013, 8, e65476.	2.5	17
112	Spontaneous construction of "Chinese boxes―by Degus (Octodon degu): A rudiment of recursive intelligence?1. Japanese Psychological Research, 2004, 46, 255-261.	1.1	16
113	Sex-specific maternal effect on egg mass, laying order, and sibling competition in the Bengalese finch (Lonchura striata var. domestica). Behavioral Ecology and Sociobiology, 2007, 61, 1695-1705.	1.4	16
114	Early ontogenetic effects on song quality in the Bengalese finch (Lonchura striata var. domestica): laying order, sibling competition, and song syntax. Behavioral Ecology and Sociobiology, 2009, 63, 363-370.	1.4	16
115	Corticobasal ganglia projecting neurons are required for juvenile vocal learning but not for adult vocal plasticity in songbirds. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22833-22843.	7.1	16
116	Impact of endogenous melatonin on rhythmic behaviors, reproduction, and survival revealed in melatoninâ€proficient C57BL/6J congenic mice. Journal of Pineal Research, 2021, 71, e12748.	7.4	16
117	Vocal area-related expression of the androgen receptor in the budgerigar (Melopsittacus undulatus) brain. Brain Research, 2008, 1208, 87-94.	2.2	15
118	Song preference of female Bengalese finches as measured by operant conditioning. Journal of Ethology, 2010, 28, 447-453.	0.8	15
119	Variability in the temporal parameters in the song of the Bengalese finch (Lonchura striata var.) Tj ETQq1 1 0.7843 Physiology, 2015, 201, 1157-1168.	814 rgBT / 1.6	Overlock 10 15
120	Fast Retrograde Access to Projection Neuron Circuits Underlying Vocal Learning in Songbirds. Cell Reports, 2020, 33, 108364.	6.4	15
121	Song Motor control organizes acoustic patterns on two levels in Bengalese finches (Lonchura) Tj ETQq1 1 0.7843 Behavioral Physiology, 2008, 194, 533-543.	14 rgBT /(1.6	Overlock 10 14
122	Comparative analysis of gene expressions among avian brains: A molecular approach to the evolution of vocal learning. Brain Research Bulletin, 2008, 75, 474-479.	3.0	14
123	Effects of amygdala lesions on male mouse ultrasonic vocalizations and copulatory behaviour. NeuroReport, 2012, 23, 676-680.	1.2	14
124	CA2 inhibition reduces the precision of hippocampal assembly reactivation. Neuron, 2021, 109, 3674-3687.e7.	8.1	14
125	Estimation of hearing range in raptors using unconditioned responses. Ornithological Science, 2004, 3, 85-92.	0.5	13
126	Spatiotemporal properties of visual stimuli for song induction in Bengalese finches. NeuroReport, 2005, 16, 1339-1343.	1.2	13

#	Article	IF	CITATIONS
127	Comparative analysis of mineralocorticoid receptor expression among vocal learners (Bengalese) Tj ETQq1 1 0.7 of avian vocal learning. Development Growth and Differentiation, 2011, 53, 961-970.	784314 rgBT 1.5	/Overlock 13
128	Salivary biomarkers are not suitable for pain assessment in newborns. Early Human Development, 2013, 89, 503-506.	1.8	13
129	Alarm call discrimination in a social rodent: adult but not juvenile degu calls induce high vigilance. Journal of Ethology, 2013, 31, 115-121.	0.8	13
130	Model-based estimation of subjective values using choice tasks with probabilistic feedback. Journal of Mathematical Psychology, 2017, 79, 29-43.	1.8	13
131	Limited auditory memory for conspecific songs in a non-territorial songbird. NeuroReport, 2000, 11, 3915-3919.	1.2	12
132	Song syntax changes in Bengalese finches singing in a helium atmosphere. NeuroReport, 2003, 14, 1725-1729.	1.2	12
133	Song-learning strategies in the Bengalese finch: do chicks choose tutors based on song complexity?. Animal Behaviour, 2009, 78, 1107-1113.	1.9	12
134	Maturationâ€dependent control of vocal temporal plasticity in a songbird. Developmental Neurobiology, 2017, 77, 995-1006.	3.0	12
135	Acoustical cues for perception of emotional vocalizations in rats. Scientific Reports, 2019, 9, 10539.	3.3	12
136	Sexing White-rumped Munias in Taiwan, using morphology, DNA and distance calls. Ornithological Science, 2003, 2, 97-102.	0.5	12
137	Growth of pair bonding in Zebra Finches: physical and social factors. Ornithological Science, 2006, 5, 65-75.	0.5	11
138	Music playing and memory trace: Evidence from event-related potentials. Neuroscience Research, 2010, 67, 334-340.	1.9	11
139	Comparative Analysis of Protocadherin-11 X-Linked Expression among Postnatal Rodents, Non-Human Primates, and Songbirds Suggests Its Possible Involvement in Brain Evolution. PLoS ONE, 2013, 8, e58840.	2.5	11
140	Combinatory rules and chunk structure in male Mueller's gibbon songs. Interaction Studies, 2017, 18, 1-25.	0.6	11
141	Apology Isn't Good Enough: An Apology Suppresses an Approach Motivation but Not the Physiological and Psychological Anger. PLoS ONE, 2012, 7, e33006.	2.5	11
142	Neural correlates of abstract rule learning: An event-related potential study. Neuropsychologia, 2012, 50, 2617-2624.	1.6	10
143	Auditory Responses to Vocal Sounds in the Songbird Nucleus Taeniae of the Amygdala and the Adjacent Arcopallium. Brain, Behavior and Evolution, 2016, 87, 275-289.	1.7	10
144	Affective valence of neurons in the vicinity of the rat amygdala: Single unit activity in response to a conditioned behavior and vocal sound playback. Behavioural Brain Research, 2017, 324, 109-114.	2.2	10

#	Article	IF	CITATIONS
145	Temporal adjustment of short calls according to a partner during vocal turn-taking in Japanese macaques. Environmental Epigenetics, 2019, 65, 99-105.	1.8	10
146	Sex differences in the development and expression of a preference for familiar vocal signals in songbirds. PLoS ONE, 2021, 16, e0243811.	2.5	10
147	Localization of the Cytochrome P450 Side-Chain Cleavage Enzyme in the Inactive Testis of the Naked Mole-Rat. Zoological Science, 2002, 19, 673-678.	0.7	9
148	Vocal control areaâ€related expression of <i>neuropilinâ€1</i> , <i> plexinâ€A4</i> , and the ligand <i>semaphorinâ€3A</i> has implications for the evolution of the avian vocal system. Development Growth and Differentiation, 2009, 51, 45-54.	1.5	9
149	Comparative Gene Expression Analysis Among Vocal Learners (Bengalese Finch and Budgerigar) and Non-Learners (Quail and Ring Dove) Reveals Variable Cadherin Expressions in the Vocal System. Frontiers in Neuroanatomy, 2011, 5, 28.	1.7	9
150	The Mysterious Noh Mask: Contribution of Multiple Facial Parts to the Recognition of Emotional Expressions. PLoS ONE, 2012, 7, e50280.	2.5	9
151	An invisible sign stimulus. NeuroReport, 2013, 24, 370-374.	1.2	9
152	The Power of an Infant's Smile: Maternal Physiological Responses to Infant Emotional Expressions. PLoS ONE, 2015, 10, e0129672.	2.5	9
153	Trill-calls in Java sparrows: Repetition rate determines the category of acoustically similar calls in different behavioral contexts. Behavioural Processes, 2018, 157, 68-72.	1.1	9
154	Respect and admiration differentially activate the anterior temporal lobe. Neuroscience Research, 2019, 144, 40-47.	1.9	9
155	Event-Related Potentials Elicited by Pre-Attentive Emotional Changes in Temporal Context. PLoS ONE, 2013, 8, e63703.	2.5	9
156	Song-syllable perception in song sparrows (Melospiza melodia) and swamp sparrows (Melospiza) Tj ETQq0 0 0 rş 221-224.	gBT /Over 0.2	ock 10 Tf 50 8
157	Acoustical variations in sexually dimorphic features of distance calls in domesticated zebra finches (Taeniopygia guttata castanotis). Journal of Ethology, 1993, 11, 29-36.	0.8	8
158	Effect of Tracheosyringeal Nerve Section on Sexually Dimorphic Distance Calls in Bengalese Finches (Lonchura striata var. domestica). Zoological Science, 1995, 12, 801-805.	0.7	8
159	Functional and structural pre-adaptations to language: Insight from comparative cognitive science into the study of language origin1. Japanese Psychological Research, 2004, 46, 207-215.	1.1	8
160	Case studies of song and call learning by a hybrid Bengalese–Zebra Finch and Bengalese-fostered Zebra Finches: Assessing innate factors in vocal learning. Ornithological Science, 2006, 5, 85-93.	0.5	8
161	Song memory in female birds: neuronal activation suggests phonological coding. NeuroReport, 2010, 21, 404-409.	1.2	8
162	Type-II cadherins modulate neural activity in cultured rat hippocampal neurons. NeuroReport, 2011, 22, 629-632.	1.2	8

#	Article	IF	CITATIONS
163	Expression pattern of cadherins in the naked mole rat (<i>Heterocephalus glaber</i>) suggests innate cortical diversification of the cerebrum. Journal of Comparative Neurology, 2011, 519, 1736-1747.	1.6	8
164	Sequential learning and rule abstraction in Bengalese finches. Animal Cognition, 2012, 15, 369-377.	1.8	8
165	Individual Variation in Behavioural Reactions to Unfamiliar Conspecific Vocalisation and Hormonal Underpinnings in Male Chimpanzees. Ethology, 2012, 118, 269-280.	1.1	8
166	Multidimensional MRI-CT atlas of the naked mole-rat brain (Heterocephalus glaber). Frontiers in Neuroanatomy, 2013, 7, 45.	1.7	8
167	Mindfulness and Psychological Status of Japanese Yoga Practitioners: a Cross-Sectional Study. Mindfulness, 2015, 6, 560-571.	2.8	8
168	Fast voltage-sensitive dye imaging of excitatory and inhibitory synaptic transmission in the rat granular retrosplenial cortex. Journal of Neurophysiology, 2017, 118, 1784-1799.	1.8	8
169	Production of regular rhythm induced by external stimuli in rats. Animal Cognition, 2021, 24, 1133-1141.	1.8	8
170	Song Preference in Female and Juvenile Songbirds: Proximate and Ultimate Questions. Frontiers in Physiology, 2022, 13, 876205.	2.8	8
171	Recurrent network for multisensory integration-identification of common sources of audiovisual stimuli. Frontiers in Computational Neuroscience, 2013, 7, 101.	2.1	7
172	Bayesian deterministic decision making: a normative account of the operant matching law and heavy-tailed reward history dependency of choices. Frontiers in Computational Neuroscience, 2014, 8, 18.	2.1	7
173	Auditory observation of infant-directed speech by mothers: experience-dependent interaction between language and emotion in the basal ganglia. Frontiers in Human Neuroscience, 2014, 8, 907.	2.0	7
174	Cadherins: potential regulators in the faculty of language. Current Opinion in Neurobiology, 2014, 28, 28-33.	4.2	7
175	Individual variability in verbal fluency correlates with γ-aminobutyric acid concentration in the left inferior frontal gyrus. NeuroReport, 2016, 27, 987-991.	1.2	7
176	Observing real-time social interaction via telecommunication methods in budgerigars (Melopsittacus) Tj ETQq0	0 0 rgBT /	Overlock 10 Tf
177	Unconscious and Distinctive Control of Vocal Pitch and Timbre During Altered Auditory Feedback. Frontiers in Psychology, 2020, 11, 1224.	2.1	7
178	Capturing the Effects of Domestication on Vocal Learning Complexity. Trends in Cognitive Sciences, 2021, 25, 462-474.	7.8	7
179	Effects of domestication on neophobia: A comparison between the domesticated Bengalese finch (Lonchura striata var. domestica) and its wild ancestor, the white-rumped munia (Lonchura striata). Behavioural Processes, 2021, 193, 104502.	1.1	7
180	Oxytocin variation and brain regionâ€specific gene expression in a domesticated avian species. Genes, Brain and Behavior, 2022, 21, e12780.	2.2	7

#	Article	IF	CITATIONS
181	Dynamical neural representation of song syntax in Bengalese Finch: a model study. Ornithological Science, 2006, 5, 95-103.	0.5	6

182 Sex differences in audiovisual discrimination learning by Bengalese Finches (Lonchura striata var.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

183	Extracting State Transition Dynamics from Multiple Spike Trains Using Hidden Markov Models with Correlated Poisson Distribution. Neural Computation, 2010, 22, 2369-2389.	2.2	6
184	Cooperation of Deterministic Dynamics and Random Noise in Production of Complex Syntactical Avian Song Sequences: A Neural Network Model. Frontiers in Computational Neuroscience, 2011, 5, 18.	2.1	6
185	Bilateral lesions of the medial frontal cortex disrupt recognition of social hierarchy during antiphonal communication in naked mole-rats (Heterocephalus glaber). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2012, 198, 109-117.	1.6	6
186	Shadows Alter Facial Expressions of Noh Masks. PLoS ONE, 2013, 8, e71389.	2.5	6
187	Response characteristics of the rat anterior cingulate cortex to ultrasonic communicative vocalizations. NeuroReport, 2017, 28, 479-484.	1.2	6
188	Regulation of action selection based on metacognition in humans via a ventral and dorsal medial prefrontal cortical network. Cortex, 2019, 119, 336-349.	2.4	6
189	Domestication effects on aggressiveness: Comparison of biting motivation and bite force between wild and domesticated finches. Behavioural Processes, 2021, 193, 104503.	1.1	6
190	Auditory short-term memory in the budgerigar (Melopsittacus undulatus). Learning and Behavior, 1988, 16, 153-156.	3.4	5
191	Detection of auditory sinusoides of fixed and uncertain frequency by budgerigars (Melopsittacus) Tj ETQq1 1 0	.784314 rg	BT /Overloc
191 192	Detection of auditory sinusoides of fixed and uncertain frequency by budgerigars (Melopsittacus) Tj ETQq1 1 0 Effects of visual stimulation on the auditory responses of the HVC song control nucleus in anesthetized Bengalese Finches. Ornithological Science, 2006, 5, 39-46.	.784314 rg 2.0	BT (Overloc
	Effects of visual stimulation on the auditory responses of the HVC song control nucleus in	2.0	J
192	Effects of visual stimulation on the auditory responses of the HVC song control nucleus in anesthetized Bengalese Finches. Ornithological Science, 2006, 5, 39-46. Learning, epigenetics, and computation: An extension on Fitch's proposal. Physics of Life Reviews, 2014,	0.5	5
192 193	 Effects of visual stimulation on the auditory responses of the HVC song control nucleus in anesthetized Bengalese Finches. Ornithological Science, 2006, 5, 39-46. Learning, epigenetics, and computation: An extension on Fitch's proposal. Physics of Life Reviews, 2014, 11, 389-390. Repeated Stops for a Red Light Induced a Leftâ€Superior Asymmetrical Brain Activity in the Nearâ€Infrared Spectroscopy Reflecting Approach Motivation of Anger in Elderly Adults but not in Younger Adults. 	0.5 2.8	5
192 193 194	 Effects of visual stimulation on the auditory responses of the HVC song control nucleus in anesthetized Bengalese Finches. Ornithological Science, 2006, 5, 39-46. Learning, epigenetics, and computation: An extension on Fitch's proposal. Physics of Life Reviews, 2014, 11, 389-390. Repeated Stops for a Red Light Induced a Leftâ€Superior Asymmetrical Brain Activity in the Nearâ€Infrared Spectroscopy Reflecting Approach Motivation of Anger in Elderly Adults but not in Younger Adults. Japanese Psychological Research, 2018, 60, 327-336. Auditory-Motor Matching in Vocal Recognition and Imitative Learning. Neuroscience, 2019, 409, 	0.5 2.8 1.1	5 5 5 5
192 193 194 195	 Effects of visual stimulation on the auditory responses of the HVC song control nucleus in anesthetized Bengalese Finches. Ornithological Science, 2006, 5, 39-46. Learning, epigenetics, and computation: An extension on Fitch's proposal. Physics of Life Reviews, 2014, 11, 389-390. Repeated Stops for a Red Light Induced a Leftâ€Superior Asymmetrical Brain Activity in the Nearâ€Infrared Spectroscopy Reflecting Approach Motivation of Anger in Elderly Adults but not in Younger Adults. Japanese Psychological Research, 2018, 60, 327-336. Auditory-Motor Matching in Vocal Recognition and Imitative Learning. Neuroscience, 2019, 409, 222-234. Cortical collateralization induced by language and arithmetic in non-right-handers. Cortex, 2020, 124, 	0.5 2.8 1.1 2.3	5 5 5 5 5

#	Article	IF	CITATIONS
199	Behavioral Correlates of 50-kHz Ultrasonic Vocalizations in Rats: Progressive Operant Discrimination Learning Reduces Frequency Modulation and Increases Overall Amplitude. Animal Behavior and Cognition, 2014, 1, 452-463.	1.0	5
200	Discrimination of natural contact calls by two strains of canary and the budgerigar. Journal of Ethology, 1989, 7, 167-169.	0.8	4
201	Prefrontal activity during koh-do incense discrimination. Neuroscience Research, 2007, 59, 257-264.	1.9	4
202	Functional evidence for internal feedback in the songbird brain nucleus HVC. NeuroReport, 2008, 19, 679-682.	1.2	4
203	Cognitive tactics of Bengalese finch (Lonchura striata var. domestica) for song discrimination in a go/no-go operant task. Journal of Ethology, 2009, 27, 11-18.	0.8	4
204	Sequential information of self-produced song is represented in the auditory areas in male Bengalese finches. NeuroReport, 2012, 23, 488-492.	1.2	4
205	Statistical Mechanics of Reward-Modulated Learning in Decision-Making Networks. Neural Computation, 2012, 24, 1230-1270.	2.2	4
206	Current source-density analysis of intracortical circuit in the granular retrosplenial cortex of rats: A possible role in stimulus time buffering. Neuroscience Research, 2013, 76, 52-57.	1.9	4
207	Relatively high motivation for context-evoked reward produces the magnitude effect in rats. Behavioural Processes, 2014, 107, 22-28.	1.1	4
208	Limitations of a habituation task to demonstrate discrimination of natural signals in songbirds. Behavioural Processes, 2015, 115, 100-108.	1.1	4
209	Untrustworthiness inhibits congruent facial reactions to happy faces. Biological Psychology, 2016, 121, 30-38.	2.2	4
210	Physiological identification of cortico-striatal projection neurons for song control in Bengalese finches. Behavioural Brain Research, 2018, 349, 37-41.	2.2	4
211	Behavioural interference among eusocial naked mole rats during work. Journal of Ethology, 2019, 37, 101-109.	0.8	4
212	Psychometric functions for detection of pure tone stimuli in Bengalese finches (Lonchura striata var.) Tj ETQq0 0 Japan (E), 1996, 17, 219-221.	0 rgBT /0 0.1	verlock 10 Tf 4
213	Non-singing female Bengalese Finches (Lonchura striata var. domestica) possess neuronal projections connecting a song learning region to a song motor region. Ornithological Science, 2006, 5, 47-55.	0.5	4
214	Distance Calls of the Wild White-backed Munia in Kijoka, Okinawa. Japanese Journal of Ornithology, 1995, 44, 231-233.	0.1	4
215	A SOFTWARE BIRD CALL DETECTOR AND ITS APPLICATION TO AUTOMATED PLAYBACK EXPERIMENTS. Bioacoustics, 1993, 5, 117-122.	1.7	3
216	Synchronized tapping facilitates learning sound sequences as indexed by the P300. Frontiers in Human Neuroscience, 2014, 8, 826.	2.0	3

#	Article	IF	CITATIONS
217	Food rewards modulate the activity of song neurons in <scp>B</scp> engalese finches. European Journal of Neuroscience, 2014, 39, 975-983.	2.6	3
218	Modulation of Emotional Category Induced by Temporal Factors in Emotion Recognition. PLoS ONE, 2015, 10, e0131636.	2.5	3
219	Mutual emotional understanding in a face-to-face communication environment: How speakers understand and react to listeners' emotion in a game task dialog. Acoustical Science and Technology, 2015, 36, 370-373.	0.5	3
220	Application of Optical Clearing Methods on the Songbird Brain. Ornithological Science, 2016, 15, 163-170.	0.5	3
221	Reduced Î ³ -aminobutyric acid in the superior temporal gyrus is associated with absolute pitch. NeuroReport, 2018, 29, 1487-1491.	1.2	3
222	Sense of Accomplishment Is Modulated by a Proper Level of Instruction and Represented in the Brain Reward System. PLoS ONE, 2017, 12, e0168661.	2.5	3
223	Measuring context dependency in birdsong using artificial neural networks. PLoS Computational Biology, 2021, 17, e1009707.	3.2	3
224	Song Complexity and Auditory Feedback in Birds: A Comparison between Two Strains of Bengalese Finches with Different Degrees of Song Complexity. Zoological Science, 2012, 29, 645-651.	0.7	2
225	Neural correlates of expectation of musical termination structure or cadence. NeuroReport, 2014, 25, 743-748.	1.2	2
226	Effects of background noise on acoustic characteristics of Bengalese finch songs. Journal of the Acoustical Society of America, 2016, 140, 4039-4045.	1.1	2
227	Note orders suggest phrase-inserting structure in male Mueller's gibbon songs: a case study. Acta Ethologica, 2020, 23, 89-102.	0.9	2
228	Perception of missing fundamentals in zebra finches and Bengalese finches Journal of the Acoustical Society of Japan (E), 2000, 21, 63-68.	0.1	2
229	Evolution of Vocal Communication in Birds:Environmental Adaptation and Sexual Selection. Japanese Journal of Ornithology, 2000, 49, 67-67.	0.1	2
230	Stimulus modality affects the accuracy of rhythm production in rats. Behavioural Processes, 2021, 194, 104560.	1.1	2
231	Auditory and sexual preferences for a father's song can co-emerge in female Bengalese finches. PLoS ONE, 2022, 17, e0254302.	2.5	2
232	Genetic and developmental effects, and morphological influences on the acoustic structure of individual distance calls in female Bengalese finches <i>Lonchura striata</i> var. <i>domestica</i> . Journal of Avian Biology, 2008, 39, 101-107.	1.2	1
233	Local structure sensitivity in auditory information processing in avian song nuclei. NeuroReport, 2014, 25, 562-568.	1.2	1

234 Chick Development and Asynchroneous Hatching in the Zebra Finch (<i>Taeniopygia guttata) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 TO ...

#	Article	IF	CITATIONS
235	Variation in auditory neural activation in response to strain-specific songs in wild and domesticated female Bengalese finches. Behavioural Brain Research, 2020, 395, 112840.	2.2	1
236	How vocal temporal parameters develop: a comparative study between humans and songbirds, two distantly related vocal learners. Journal of Language Evolution, 2021, 6, 26-36.	2.2	1
237	Increase in social interactions of wild Northern Gray gibbons (Hylobates funereus) during the mast fruiting period in the Danum Valley Conservation Area, Sabah, Malaysia. Acta Ethologica, 2021, 24, 153-163.	0.9	1
238	Copulation calls in wild Mueller's gibbons (Hylobates muelleri). Interaction Studies, 2019, 20, 362-374.	0.6	1
239	The utility of internal cognitive states as discriminative cues affecting behavioral adaptation in humans and animals. Animal Behavior and Cognition, 2019, 6, 262-272.	1.0	1
240	Different Reactions of Zebra Finches and Bengalese Finches to a Three-Component Mixture of Anesthetics. Zoological Science, 2020, 37, 159.	0.7	1
241	Durations of preparatory motor activity in the avian basal ganglia for songs and calls in a species of songbirds. Neuroscience Research, 2022, , .	1.9	1
242	Ego-centric perception of synthetic hybrid calls by bengalese finches (Lonchura domestica) and zebra finches (Taeniopygia guttata castanotis). Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience Society, 1991, 16, 173.	0.0	0
243	Effect of tracheosyringeal nerve section on sexually dimorphic vocalizations in bengalese finches (). Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience Society, 1992, 17, 273.	0.0	0
244	The effect of sound location in a song-discrimination task by Bengalese finches (Lonchura striata var.) Tj ETQq0 C	0 rgBT /C	verlock 10 Ti
245	A direct neuronal connection between the telencephalic nucleus robustus arcopallialis and the nucleus nervi hypoglossi, pars tracheosyringealis in Bengalese finches (Lonchura striata var.) Tj ETQq1 1 0.78431	4 ng® T /O\	verdock 10 Tf
246	Contribution of prosodic cues in song learning by Bengalese finches Lonchura striata var. domestica. IBRO Reports, 2019, 6, S453.	0.3	0
247	Distributed representation of discrete sequential vocalization in the Bengalese finch (Lonchura) Tj ETQq1 1 0.784	1314 rgBT 1.7	/Overlock 10
248	Switching perception of musical meters by listening to different acoustic cues of biphasic sound stimulus. PLoS ONE, 2021, 16, e0256712.	2.5	0
249	Neural responses to communication sound in the inferior colliculus of the naked moleâ€rat. Journal of the Acoustical Society of America, 2006, 120, 3154-3154.	1.1	0
250	Vocalizations in a Japanese wild-derived laboratory mouse KOR1: Development, behavioral contexts, and sound characteristics. Acoustical Science and Technology, 2012, 33, 52-55.	0.5	0
251	CEREBRAL LATERALITY FOR PROSODY PROCESSING IN HUMAN NEONATES: EVIDENCE FROM MULTICHANNEL NEAR-INFRARED SPECTROSCOPY. , 2012, , .		0
252	Operant Conditioning of the Gray Starling, Sturnus cineraceus. Japanese Journal of Ornithology, 1993, 41, 9-16.	0.1	0

#	Article	IF	CITATIONS
253	Finite-State Syntax in Bengalese Finch Song: Brain, Behavior and Evolution Japan Journal of Logopedics and Phoniatrics, 1999, 40, 364-370.	0.1	Ο
254	Origin of Vocal Language. Japan Journal of Logopedics and Phoniatrics, 2016, 57, 367-371.	0.1	0
255	Biased Learning of Sexual Signals by Female Bengalese Finches. Ornithological Science, 2020, 19, 3.	0.5	Ο
256	Special issue on Symbol Emergence in Robotics and Cognitive Systems (I). Advanced Robotics, 2022, 36, 1-2.	1.8	0
257	Special issue on symbol emergence in robotics and cognitive systems (II). Advanced Robotics, 2022, 36, 217-218.	1.8	Ο
258	Mismatch Responses Evoked by Sound Pattern Violation in the Songbird Forebrain Suggest Common Auditory Processing With Human. Frontiers in Physiology, 2022, 13, 822098.	2.8	0