Sanjay H Upadhyay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/595583/publications.pdf Version: 2024-02-01

ςλνιλν Η Πρλημνλν

#	Article	IF	CITATIONS
1	Numerical and experimental study on novel tensioning method for the inflatable paraboloid reflector antenna. Mechanics Based Design of Structures and Machines, 2024, 52, 54-71.	4.7	1
2	Geometric design and deployment behavior of origami inspired conical structures. Mechanics Based Design of Structures and Machines, 2023, 51, 113-137.	4.7	8
3	Deployable toroidal structures based on modified Kresling pattern. Mechanism and Machine Theory, 2022, 176, 104972.	4.5	8
4	Investigation of wrinkling behaviour in the creased thin-film laminates. International Journal of Mechanics and Materials in Design, 2021, 17, 899-913.	3.0	8
5	The novel design concept for the tensioning system of an inflatable planar membrane reflector. Archive of Applied Mechanics, 2021, 91, 1233-1246.	2.2	5
6	Advance spectral approach for condition evaluation of rolling element bearings. ISA Transactions, 2020, 103, 366-389.	5.7	4
7	Influence of roller defect and coupled roller–inner–outer race defects on the performance of cylindrical roller bearing. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2019, 233, 731-746.	0.8	7
8	The application of semi-nonnegative matrix factorization for detection of incipient faults in bearings. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233, 4543-4555.	2.1	4
9	Nonlinear analysis of cylindrical roller bearing under the influence of defect on individual and coupled inner–outer race. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2019, 233, 404-428.	0.8	6
10	Intelligent bearing performance degradation assessment and remaining useful life prediction based on self-organising map and support vector regression. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232, 1118-1132.	2.1	50
11	Bearing performance degradation assessment based on a combination of empirical mode decomposition and k-medoids clustering. Mechanical Systems and Signal Processing, 2017, 93, 16-29.	8.0	120
12	The use of MD-CUMSUM and NARX neural network for anticipating the remaining useful life of bearings. Measurement: Journal of the International Measurement Confederation, 2017, 111, 397-410.	5.0	65
13	Nonlinear Dynamic Response of Cylindrical Roller Bearing–Rotor System with 9 Degree of Freedom Model Having a Combined Localized Defect at Inner–Outer Races of Bearing. Tribology Transactions, 2017, 60, 284-299.	2.0	20
14	Comparison between Artificial Neural Network and Support Vector Method for a Fault Diagnostics in Rolling Element Bearings. Procedia Engineering, 2016, 144, 390-397.	1.2	44
15	A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings. Tribology International, 2016, 96, 289-306.	5.9	484
16	Continuum Solid Modeling Based Finite Element Method Simulation Approach for Wavy Single Walled Boron Nitride Nanotube Based Resonant Nano Mechanical Sensors. Journal of Computational and Theoretical Nanoscience, 2015, 12, 1841-1846.	0.4	4
17	Fault diagnosis of high-speed rolling element bearings using wavelet packet transform. International Journal of Signal and Imaging Systems Engineering, 2015, 8, 390.	0.6	5
18	Nonlinear vibration analysis of piezo-actuated flat thin membrane. JVC/Journal of Vibration and Control, 2015, 21, 1162-1170.	2.6	14

SANJAY H UPADHYAY

#	Article	IF	CITATIONS
19	Effect of chirality and point defect on resonant characterization of single-walled boron nitride nanotube-based mass sensor. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2015, 229, 85-95.	0.1	0
20	An analytical model (7 D.O.F.) for the prediction of the vibration response of cylindrical roller element bearings due to a combined localized defect. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2015, 229, 383-406.	0.8	7
21	Analysis of alignment effect on carbon nanotube layer in nanocomposites. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 66, 221-227.	2.7	5
22	Boron Nitride Nanotube-Based Mass Sensing of Zeptogram Scale. Spectroscopy Letters, 2015, 48, 17-21.	1.0	8
23	Nonlinear dynamic analysis of high speed bearings due to combined localized defects. JVC/Journal of Vibration and Control, 2014, 20, 2300-2313.	2.6	27
24	Effect of Localized Defect on the Vibration Behavior of Cylindrical Roller Bearing-Rotor System. Lecture Notes in Mechanical Engineering, 2014, , 297-319.	0.4	1
25	Mechanics of Deformation of Multi Walled Carbon Nanotube Reinforced Composites. Journal of Computational and Theoretical Nanoscience, 2014, 11, 2603-2610.	0.4	1
26	Single walled boron nitride nanotubeâ€based biosensor: an atomistic finite element modelling approach. IET Nanobiotechnology, 2014, 8, 149-156.	3.8	13
27	Boron nitride nanotubeâ€based biosensing of various bacterium/viruses: continuum modellingâ€based simulation approach. IET Nanobiotechnology, 2014, 8, 143-148.	3.8	15
28	Theoretical model to predict the effect of localized defect on dynamic behavior of cylindrical roller bearing at inner race and outer race. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2014, 228, 152-171.	0.8	13
29	Boron nitride nanotube-based biosensor for acetone detection: molecular structural mechanics-based simulation. Molecular Simulation, 2014, 40, 1035-1042.	2.0	18
30	Fault diagnosis of rolling element bearing by using multinomial logistic regression and wavelet packet transform. Soft Computing, 2014, 18, 255-266.	3.6	82
31	Evaluation of elastic properties of multi walled carbon nanotube reinforced composite. Computational Materials Science, 2014, 81, 332-338.	3.0	43
32	Finite element analysis of an inflatable torus considering air mass structural element. Advances in Space Research, 2014, 53, 163-173.	2.6	12
33	Effect of interphase on elastic behavior of multiwalled carbon nanotube reinforced composite. Computational Materials Science, 2014, 87, 267-273.	3.0	70
34	Nonlinear Dynamic Behavior of Balanced Rotor Bearing System Due to Various Localized Defects. Lecture Notes in Mechanical Engineering, 2014, , 345-357.	0.4	1
35	Nonlinear Dynamic Analysis of High Speed Unbalanced Rotor Supported on Deep Groove Ball Bearings Considering the Preload Effect. Lecture Notes in Mechanical Engineering, 2014, , 481-490.	0.4	0
36	Nanocomposites Based on Multiwalled Carbon Nanotubes With Effective Young's Modulus Dependent on Number of Layers. , 2014, , .		0

SANJAY H UPADHYAY

#	Article	IF	CITATIONS
37	Study of Effect of Unbalanced Forces for High Speed Rotor. Procedia Engineering, 2013, 64, 593-602.	1.2	14
38	Vibration Analysis of an Inflatable Torus Based on Mode Shape. AIAA Journal, 2013, 51, 1526-1532.	2.6	6
39	Vibrational characteristics of defective single walled BN nanotube based nanomechanical mass sensors: Extended defect or dislocation line. Sensors and Actuators A: Physical, 2013, 203, 160-167.	4.1	11
40	Cantilevered single walled boron nitride nanotube based nanomechanical resonators of zigzag and armchair forms. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 50, 73-82.	2.7	20
41	Vibrational characteristics of defective single walled BN nanotube based nanomechanical mass sensors: single atom vacancies and divacancies. Sensors and Actuators A: Physical, 2013, 197, 111-121.	4.1	18
42	Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN. Expert Systems With Applications, 2013, 40, 4137-4145.	7.6	269
43	AN EFFICIENT FINITE ELEMENT MODEL FOR ANALYSIS OF SINGLE WALLED BORON NITRIDE NANOTUBE-BASED RESONANT NANOMECHANICAL SENSORS. Nano, 2013, 08, 1350011.	1.0	12
44	Vibrational Analysis of Zigzag and Armchair Fixed Free Single Walled Boron Nitride Nanotubes: Atomistic Modeling Approach. Current Nanoscience, 2013, 9, 254-261.	1.2	7
45	Effect of Chirality on Resonant Behavior of Single Walled BN Nanotube Based Nanomechanical Resonator. Current Nanoscience, 2013, 9, 525-531.	1.2	3
46	WRINKLING DYNAMICS OF MEMBRANE BASED ON USER DEFINED WRINKLE PATTERN. International Journal of Computational Materials Science and Engineering, 2012, 01, 1250034.	0.7	1
47	MASS DETECTION USING SINGLE WALLED BORON NITRIDE NANOTUBE AS A NANOMECHANICAL RESONATOR. Nano, 2012, 07, 1250029.	1.0	17
48	Vibration Analysis of Inflatable Parabolic Structure for Space Application. , 2012, , .		0
49	Vibration Analysis of Single Walled Boron Nitride Nanotube Based Nanoresonators. Journal of Nanotechnology in Engineering and Medicine, 2012, 3, .	0.8	17
50	Doubly-Clamped Single Walled Boron Nitride Nanotube Based Nanomechanical Resonators: A Computational Investigation of Their Behavior. Journal of Nanotechnology in Engineering and Medicine, 2012, 3, .	0.8	8
51	Nonlinear Dynamic Analysis and Experimental Verification of an Unbalanced Rotor Supported by Ball Bearings. , 2011, , .		0
52	Vibration Analysis of High Speed Rolling Element Bearings due to Race Defects. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2011, , 349-359.	0.2	5
53	Analysis of Nonlinear Phenomena in High Speed Ball Bearings due to Radial Clearance and Unbalanced Rotor Effects. JVC/Journal of Vibration and Control, 2010, 16, 65-88.	2.6	60
54	Chaos and Nonlinear Dynamic Analysis of High-Speed Rolling Element Bearings due to Varying Number of Rolling Elements. International Journal of Nonlinear Sciences and Numerical Simulation, 2009, 10, .	1.0	5

#	Article	IF	CITATIONS
55	Vibration Analysis of an Unbalanced Rotating Shaft Due to Ball Waviness. , 2009, , .		0
56	Dynamic Analysis of Ball Bearings Due to Clearance Effect. , 2009, , .		0
57	Non-linear vibration signature analysis of a high-speed rotating shaft due to ball size variations and varying number of balls. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2009, 223, 83-105.	0.8	10
58	Vibration Signature Analysis of High-Speed Unbalanced Rotors Supported by Rolling-Element Bearings due to Off-Sized Rolling Elements. International Journal of Acoustics and Vibrations, 2009, 14, .	0.3	4
59	Experimental investigation of cylindrical roller bearing for inner race defect under varying load. IOP Conference Series: Materials Science and Engineering, 0, 1004, 012022.	0.6	1