Pei Kang Shen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/595579/pei-kang-shen-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

256 12,791 59 101 h-index g-index citations papers 267 7.19 14,935 10.4 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
256	Boosting Electrocatalytic Activity of Single Atom Catalysts Supported on Nitrogen-Doped Carbon through N Coordination Environment Engineering <i>Small</i> , 2022 , e2105329	11	19
255	Shell-thickness-dependent Pd@PtNi coreBhell nanosheets for efficient oxygen reduction reaction. <i>Chemical Engineering Journal</i> , 2022 , 427, 131565	14.7	4
254	Gram-Scale production of Cu3P-Cu2O Janus nanoparticles into nitrogen and phosphorous doped porous carbon framework as bifunctional electrocatalysts for overall water splitting. <i>Chemical Engineering Journal</i> , 2022 , 427, 130946	14.7	21
253	Fe and Co dual-doped Ni3S4 nanosheet with enriched high-valence Ni sites for efficient oxygen evolution reaction. <i>Chemical Engineering Journal</i> , 2022 , 427, 130742	14.7	17
252	Enhanced oxygen reduction and methanol oxidation reaction over self-assembled Pt-M (M´=´Co, Ni) nanoflowers. <i>Journal of Colloid and Interface Science</i> , 2022 , 607, 1411-1423	9.3	2
251	Designing highly efficient 3D porous Ni-Fe sulfide nanosheets based catalyst for the overall water splitting through component regulation <i>Journal of Colloid and Interface Science</i> , 2022 , 616, 422-432	9.3	Ο
250	Bottom-up synthesis of few-layered graphene powders and their applications as efficient lubricating and electromagnetic shielding additives. <i>FlatChem</i> , 2022 , 33, 100375	5.1	1
249	Ni activated Mo2C nanoparticles supported on stereotaxically-constructed graphene for efficient overall water splitting. <i>International Journal of Hydrogen Energy</i> , 2021 ,	6.7	3
248	MoP-Mo2C quantum dot heterostructures uniformly hosted on a heteroatom-doped 3D porous carbon sheet network as an efficient bifunctional electrocatalyst for overall water splitting. <i>Chemical Engineering Journal</i> , 2021 , 133719	14.7	7
247	Ru doping NiCoP hetero-nanowires with modulated electronic structure for efficient overall water splitting <i>Journal of Colloid and Interface Science</i> , 2021 , 610, 213-220	9.3	2
246	One-dimensional core-shell motif nanowires with chemically-bonded transition metal sulfide-carbon heterostructures for efficient sodium-ion storage <i>Chemical Science</i> , 2021 , 12, 15054-150	08 0	4
245	Atomic Scale Mechanisms of Multimode Oxide Growth on Nickel-Chromium Alloy: Direct Observation of the Initial Oxide Nucleation and Growth. <i>ACS Applied Materials & Direct</i> 2021, 13, 1903-1913	9.5	4
244	Large-scale Synthesis of Porous Pt Nanospheres /Three-dimensional Graphene Hybrid Materials as a Highly Active and Stable Electrocatalyst for Oxygen Reduction Reaction. <i>ChemistrySelect</i> , 2021 , 6, 208	od-208	4
243	Graphene Nanosphere as Advanced Electrode Material to Promote High Performance Symmetrical Supercapacitor. <i>Small</i> , 2021 , 17, e2007915	11	14
242	High performance lithium-sulfur batteries based on CoP nanoparticle-embedded nitrogen-doped carbon nanotube hollow polyhedra. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 885, 114996	4.1	5
241	Advanced Aqueous Zinc-Ion Batteries Enabled by 3D Ternary MnO/Reduced Graphene Oxide/Multiwall Carbon Nanotube Hybrids. <i>Energy Technology</i> , 2021 , 9, 2100022	3.5	6
240	Highly efficient PtCo nanoparticles on Co NC nanorods with hierarchical pore structure for oxygen reduction reaction. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 15991-16002	6.7	8

(2021-2021)

239	Toward a High-Energy-Density Cathode with Enhanced Temperature Adaptability for Sodium-Ion Batteries: A Case Study of NaMnZr(PO) Microspheres with Embedded Dual-Carbon Networks. <i>ACS Applied Materials & Distriction (Policy Page 2018)</i> , 13, 21390-21400	9.5	4
238	N, S, P co-doped graphene-like carbon nanosheets developed via in situ engineering strategy of carbon pz-orbitals for highly efficient oxygen redox reaction. <i>FlatChem</i> , 2021 , 27, 100250	5.1	4
237	High-capacity and high-rate Ni-Fe batteries based on mesostructured quaternary carbon/Fe/FeO/FeO hybrid material. <i>IScience</i> , 2021 , 24, 102547	6.1	5
236	N, S Codoped Carbon Matrix-Encapsulated Co9S8 Nanoparticles as a Highly Efficient and Durable Bifunctional Oxygen Redox Electrocatalyst for Rechargeable ZnAir Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2101249	21.8	27
235	Emerging artificial nitrogen cycle processes through novel electrochemical and photochemical synthesis. <i>Materials Today</i> , 2021 , 46, 212-233	21.8	28
234	Electricity generation from ionic solution flowing through packed three-dimensional graphene powders. <i>Nanotechnology</i> , 2021 , 32,	3.4	1
233	Nitrogen and Phosphate Co-doped Graphene as Efficient Bifunctional Electrocatalysts by Precursor Modulation Strategy for Oxygen Reduction and Evolution Reactions. <i>ChemElectroChem</i> , 2021 , 8, 3262-3	21732	2
232	CO tolerance and durability study of PtMe(Me´=´1r or Pd) electrocatalysts for H2-PEMFC application. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 13865-13877	6.7	5
231	Electrocatalytic reduction of nitrogen on FeAg/Si for ammonia synthesis: A simple strategy for continuous regulation of faradaic efficiency by controlling H+ ions transfer rate. <i>Applied Catalysis B: Environmental</i> , 2021 , 283, 119606	21.8	10
230	Highly stable Pt-Co nanodendrite in nanoframe with Pt skin structured catalyst for oxygen reduction electrocatalysis. <i>Applied Catalysis B: Environmental</i> , 2021 , 281, 119460	21.8	44
229	Black potassium titanate nanobelts: Ultrafast and durable aqueous redox electrolyte energy storage. <i>Journal of Power Sources</i> , 2021 , 483, 229140	8.9	2
228	Hierarchically skeletal multi-layered Pt-Ni nanocrystals for highly efficient oxygen reduction and methanol oxidation reactions. <i>Chinese Journal of Catalysis</i> , 2021 , 42, 648-657	11.3	23
227	A flexible and conductive MXene-coated fabric integrated with in situ sulfur loaded MXene nanosheets for long-life rechargeable Li-S batteries. <i>Nanoscale</i> , 2021 , 13, 2963-2971	7.7	8
226	Facile One-Pot Synthesis of a PtRh Alloy Decorated on Ag Nanocubes as a Trimetallic Core B hell Catalyst for Boosting Methanol Oxidation Reaction. <i>ACS Applied Energy Materials</i> , 2021 , 4, 1085-1092	6.1	8
225	Porous nanosheets of Cu3P@N,P co-doped carbon hosted on copper foam as an efficient and ultrastable pH-universal hydrogen evolution electrocatalyst. <i>Sustainable Energy and Fuels</i> , 2021 , 5, 2451	- 2 2857	3
224	Catalyst Materials for Oxygen Reduction Reaction 2021 , 85-182		
223	Ultrathin Co3O4 P t core-shell nanoparticles coupled with three-dimensional graphene for oxygen reduction reaction. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 10303-10311	6.7	4
222	Hollow Graphene Fibers with Archimedean-Type Spirals for Flexible and Wearable Electronics. <i>ACS Applied Nano Materials</i> , 2021 , 4, 6985-6994	5.6	2

221	Ni-MoO2 nanoparticles heterojunction loaded on stereotaxically-constructed graphene for high-efficiency overall water splitting. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 897, 115555	4.1	1
220	Using silkworm excrement and spent lead paste to prepare additives for improving the cycle life of lead-acid batteries. <i>Journal of Energy Storage</i> , 2021 , 41, 102785	7.8	4
219	Heterogeneous NiFeCoP/NF Nanorods as a Bifunctional Electrocatalyst for Efficient Water Electrolysis. <i>ChemCatChem</i> , 2021 , 13, 4602	5.2	3
218	Enhanced electrocatalytic overall water splitting over novel one-pot synthesized RuMoO3-x and Fe3O4NiFe layered double hydroxide on Ni foam. <i>Renewable Energy</i> , 2021 , 177, 1346-1355	8.1	8
217	Hyperbranched concave octahedron of PtIrCu nanocrystals with high-index facets for efficiently electrochemical ammonia oxidation reaction. <i>Journal of Colloid and Interface Science</i> , 2021 , 601, 1-11	9.3	4
216	Hollow porous carbon spheres for high initial coulombic efficiency and low-potential sodium ion storage. <i>Journal of Colloid and Interface Science</i> , 2021 , 604, 168-177	9.3	3
215	A facile strategy synthesized PtRhNi truncated triangle nanoflakes with PtRh-rich surface as highly active and stable bifunctional catalysts for direct methanol fuel cells. <i>Journal of Colloid and Interface Science</i> , 2021 , 604, 894-902	9.3	2
214	Preparation of the Catalysts 2021 , 183-214		
213	Ultrathin PtCo nanorod assemblies with self-optimized surface for oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2020 , 870, 114194	4.1	7
212	Recent Progress in Graphene-Based Nanostructured Electrocatalysts for Overall Water Splitting. <i>Electrochemical Energy Reviews</i> , 2020 , 3, 370-394	29.3	41
211	Rational Design and Synthesis of Hierarchical Porous MnNC Nanoparticles with Atomically Dispersed MnNx Moieties for Highly Efficient Oxygen Reduction Reaction. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 9367-9376	8.3	23
210	Electrocatalytic production of ammonia: Biomimetic electrode electrolyte design for efficient electrocatalytic nitrogen fixation under ambient conditions. <i>Applied Catalysis B: Environmental</i> , 2020 , 271, 118919	21.8	34
209	In situ molecular-level synthesis of N, S co-doped carbon as efficient metal-free oxygen redox electrocatalysts for rechargeable ZnAir batteries. <i>Applied Materials Today</i> , 2020 , 20, 100737	6.6	15
208	One-Pot Fabrication of Site-Selective Hexapod PtPdCu Concave Rhombic Dodecahedrons as Highly Efficient Catalysts for Electrocatalysis. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 1520-1526	8.3	14
207	Template-free growth of spherical vanadium disulfide nanoflowers as efficient anodes for sodium/potassium ion batteries. <i>Materials and Design</i> , 2020 , 192, 108780	8.1	12
206	Electronic modulation of cobalt phosphide nanosheet arrays via copper doping for highly efficient neutral-pH overall water splitting. <i>Applied Catalysis B: Environmental</i> , 2020 , 265, 118555	21.8	74
205	Nonprecious metal's graphene-supported electrocatalysts for hydrogen evolution reaction: Fundamentals to applications 2020 , 2, 99-121		59
204	A facile and cost effective synthesis of nitrogen and fluorine Co-doped porous carbon for high performance Sodium ion battery anode material. <i>Journal of Power Sources</i> , 2020 , 448, 227568	8.9	18

203	Highly efficient Pt-Co alloy hollow spheres with ultra-thin shells synthesized via Co-B-O complex as intermediates for hydrogen evolution reaction. <i>Journal of Catalysis</i> , 2020 , 381, 385-394	7.3	8	
202	Boosting the photocatalytic activity of mesoporous SrTiO3 for nitrogen fixation through multiple defects and strain engineering. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 22251-22256	13	11	
201	MnS@N,S Co-Doped Carbon Core/Shell Nanocubes: Sulfur-Bridged Bonds Enhanced Na-Storage Properties Revealed by In Situ Raman Spectroscopy and Transmission Electron Microscopy. <i>Small</i> , 2020 , 16, e2003001	11	12	
200	Cation-adsorption-assisted Ni3S2/carbon nanowalls composites with three-dimensional interconnected porous structures for high-performance lithium-ion battery anodes. <i>Journal of Materials Science</i> , 2020 , 55, 17081-17093	4.3	3	
199	Ultrathin-shell IrCo hollow nanospheres as highly efficient electrocatalysts towards the oxygen evolution reaction in acidic media. <i>Nanoscale</i> , 2020 , 12, 24070-24078	7.7	8	
198	Facile one-step in-situ encapsulation of non-noble metal Co2P nanoparticles embedded into B, N, P tri-doped carbon nanotubes for efficient hydrogen evolution reaction. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 24312-24321	6.7	15	
197	Novel Bi-Doped Amorphous SnO Nanoshells for Efficient Electrochemical CO Reduction into Formate at Low Overpotentials. <i>Advanced Materials</i> , 2020 , 32, e2002822	24	47	
196	Membrane and electrode engineering of high-performance lithium-sulfur batteries modified by stereotaxically-constructed graphene. <i>Journal of Alloys and Compounds</i> , 2020 , 834, 155096	5.7	14	
195	Recent advances in graphene-based platinum and palladium electrocatalysts for the methanol oxidation reaction. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 22189-22217	13	52	
194	Self-assembled and well separated B and N co-doped hierarchical carbon structures as high-capacity, ultra-stable, LIB anode materials. <i>Sustainable Energy and Fuels</i> , 2019 , 3, 478-487	5.8	4	
193	NiCo2S4 nanocores in-situ encapsulated in graphene sheets as anode materials for lithium-ion batteries. <i>Chemical Engineering Journal</i> , 2019 , 364, 167-176	14.7	38	
192	Boosting the volumetric energy of supercapacitors using polytetrafluoroethylene pyrolysis gas. Journal of Power Sources, 2019 , 414, 76-85	8.9	11	
191	Bifunctional catalysts for overall water splitting: CoNi oxyhydroxide nanosheets electrodeposited on titanium sheets. <i>Electrochimica Acta</i> , 2019 , 301, 449-457	6.7	41	
190	Cross-double dumbbell-like PtNi nanostructures with enhanced catalytic performance toward the reactions of oxygen reduction and methanol oxidation. <i>Applied Catalysis B: Environmental</i> , 2019 , 246, 277-283	21.8	98	
189	Graphitized carbon nanocages/palladium nanoparticles: Sustainable preparation and electrocatalytic performances towards ethanol oxidation reaction. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 6172-6181	6.7	19	
188	Remarkable enhancement in the electrochemical activity of maricite NaFePO4 on high-surface-area carbon cloth for sodium-ion batteries. <i>Carbon</i> , 2019 , 146, 78-87	10.4	32	
187	Ultrahigh energy density asymmetric electrochemical capacitors based on flower-like ZnO/Co3O4 nanobundle arrays and stereotaxically constricted graphene. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 1273-1280	13	34	
186	Spinel NiCo2O4 3-D nanoflowers supported on graphene nanosheets as efficient electrocatalyst for oxygen evolution reaction. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 16120-16131	6.7	70	

185	Controllable preparation of nitrogen-doped graphitized carbon from molecular precursor as non-metal oxygen evolution reaction electrocatalyst. <i>Applied Surface Science</i> , 2019 , 491, 723-734	6.7	16
184	Bimetallic Ni-Co phosphide nanosheets self-supported on nickel foam as high-performance electrocatalyst for hydrogen evolution reaction. <i>Electrochimica Acta</i> , 2019 , 317, 191-198	6.7	44
183	Chestnut-like copper cobalt phosphide catalyst for all-pH hydrogen evolution reaction and alkaline water electrolysis. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 14271-14279	13	46
182	Worm-like S-doped RhNi alloys as highly efficient electrocatalysts for hydrogen evolution reaction. <i>Applied Catalysis B: Environmental</i> , 2019 , 255, 117737	21.8	42
181	Manganese oxide(III)/carbon hybrids with interesting morphologies as improved active materials for supercapacitors. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 13623-13631	6.7	9
180	A Facile Method to Synthesize PtNi Octahedral Nanoparticles with Porous and Open Structure Features for Enhanced Oxygen Reduction Catalysis. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 8109-8116	8.3	8
179	Facile synthesis of bimetallic Pt-Pd symmetry-broken concave nanocubes and their enhanced activity toward oxygen reduction reaction. <i>Applied Catalysis B: Environmental</i> , 2019 , 251, 49-56	21.8	50
178	Molecular-level design of Fe-N-C catalysts derived from Fe-dual pyridine coordination complexes for highly efficient oxygen reduction. <i>Journal of Catalysis</i> , 2019 , 372, 245-257	7.3	41
177	Cu2S-Cu3P Nanowire Arrays Self-Supported on Copper Foam as Boosting Electrocatalysts for Hydrogen Evolution. <i>Energy Technology</i> , 2019 , 7, 1800993	3.5	16
176	One-Pot Synthesis of PtPd Bimetallic Nanodendrites with Enhanced Electrocatalytic Activity for Oxygen Reduction Reaction. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 8419-8428	8.3	25
175	General Strategy To Synthesize Highly Dense Metal Oxide Quantum Dots-Anchored Nitrogen-Rich Graphene Compact Monoliths To Enable Fast and High-Stability Volumetric Lithium/Sodium Storage. ACS Applied Energy Materials, 2019, 2, 3500-3512	6.1	14
174	Molybdenum-modified and vertex-reinforced quaternary hexapod nano-skeletons as efficient electrocatalysts for methanol oxidation and oxygen reduction reaction. <i>Applied Catalysis B: Environmental</i> , 2019 , 258, 117974	21.8	24
173	Excavated and dendritic Pt-Co nanocubes as efficient ethylene glycol and glycerol oxidation electrocatalysts. <i>Applied Catalysis B: Environmental</i> , 2019 , 258, 117951	21.8	33
172	The controllable growth of PtCuRh rhombic dodecahedral nanoframes as efficient catalysts for alcohol electrochemical oxidation. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18619-18625	13	21
171	Three-dimensional, hetero-structured, Cu3P@C nanosheets with excellent cycling stability as Na-ion battery anode material. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 16999-17007	13	44
170	Highly Efficient Multifunctional Co-N-C Electrocatalysts with Synergistic Effects of Co-N Moieties and Co Metallic Nanoparticles Encapsulated in a N-Doped Carbon Matrix for Water-Splitting and Oxygen Redox Reactions. <i>ACS Applied Materials & Discrete Redox</i> 11, 39809-39819	9.5	50
169	The Effects of Pore Size on Electrical Performance in Lithium-Thionyl Chloride Batteries. <i>Frontiers in Materials</i> , 2019 , 6,	4	7
168	One-pot preparation of Ni3S2@3-D graphene free-standing electrode by simple Q-CVD method for efficient oxygen evolution reaction. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 30806-30819	6.7	8

167	Electricity Generation from Capillary-Driven Ionic Solution Flow in a Three-Dimensional Graphene Membrane. <i>ACS Applied Materials & Acs Applied </i>	9.5	28
166	Synthesis and characterization of activated 3D graphene via catalytic growth and chemical activation for electrochemical energy storage in supercapacitors. <i>Electrochimica Acta</i> , 2019 , 324, 13487	8 ^{6.7}	21
165	P-doped CNTs encapsulated nickel hybrids with flower-like structure as efficient catalysts for hydrogen evolution reaction. <i>Electrochimica Acta</i> , 2019 , 298, 142-149	6.7	31
164	Carbon-Encapsulated Electrocatalysts for the Hydrogen Evolution Reaction. <i>Electrochemical Energy Reviews</i> , 2019 , 2, 105-127	29.3	90
163	In-situ encapsulating FeS/Fe3C nanoparticles into nitrogen-sulfur dual-doped graphene networks for high-rate and ultra-stable lithium storage. <i>Journal of Alloys and Compounds</i> , 2019 , 779, 193-201	5.7	17
162	Self-Assembled Nanofiber Networks of Well-Separated B and N Codoped Carbon as Pt Supports for Highly Efficient and Stable Oxygen Reduction Electrocatalysis. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 660-668	8.3	17
161	Trimetallic Hollow PtNiCo Nanodendrites as Efficient Anodic Electrocatalysts. <i>ACS Applied Energy Materials</i> , 2019 , 2, 961-965	6.1	14
160	One-step growth of nitrogen-decorated ironlickel sulfide nanosheets for the oxygen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 5592-5597	13	42
159	One-step solid state synthesis of PtCo nanocubes/graphene nanocomposites as advanced oxygen reduction reaction electrocatalysts. <i>Journal of Catalysis</i> , 2018 , 362, 85-93	7.3	21
158	Simultaneous formation of trimetallic Pt-Ni-Cu excavated rhombic dodecahedrons with enhanced catalytic performance for the methanol oxidation reaction. <i>Nano Research</i> , 2018 , 11, 4786-4795	10	39
157	One-pot synthesized boron-doped RhFe alloy with enhanced catalytic performance for hydrogen evolution reaction. <i>Applied Catalysis B: Environmental</i> , 2018 , 230, 58-64	21.8	89
156	Three-dimensional graphene sheets with NiO nanobelt outgrowths for enhanced capacity and long term high rate cycling Li-ion battery anode material. <i>Journal of Power Sources</i> , 2018 , 379, 362-370	8.9	43
155	Metal-free mesoporous carbon with higher contents of active N and S codoping by template method for superior ORR efficiency to Pt/C. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 3705-37	767	43
154	Mo- and Fe-Modified Ni(OH)2/NiOOH Nanosheets as Highly Active and Stable Electrocatalysts for Oxygen Evolution Reaction. <i>ACS Catalysis</i> , 2018 , 8, 2359-2363	13.1	195
153	Self-assembled superstructure of carbon-wrapped, single-crystalline Cu3P porous nanosheets: One-step synthesis and enhanced Li-ion battery anode performance. <i>Energy Storage Materials</i> , 2018 , 15, 75-81	19.4	50
152	N-Doped Porous Molybdenum Carbide Nanobelts as Efficient Catalysts for Hydrogen Evolution Reaction. <i>Applied Catalysis B: Environmental</i> , 2018 , 224, 533-540	21.8	281
151	In situ carbon nanotube clusters grown from three-dimensional porous graphene networks as efficient sulfur hosts for high-rate ultra-stable LiB batteries. <i>Nano Research</i> , 2018 , 11, 1731-1743	10	36
150	Hierarchical NiO nanobelt film array as an anode for lithium-ion batteries with enhanced electrochemical performance <i>RSC Advances</i> , 2018 , 8, 26589-26595	3.7	16

149	Low temperature synthesis of polyhedral hollow porous carbon with high rate capability and long-term cycling stability as Li-ion and Na-ion battery anode material. <i>Journal of Power Sources</i> , 2018 , 398, 149-158	8.9	15
148	A novel boron and nitrogen co-doped three-dimensional porous graphene sheet framework as high performance Li-ion battery anode material. <i>Inorganic Chemistry Communication</i> , 2018 , 96, 159-164	3.1	25
147	Asymmetric 3d Electronic Structure for Enhanced Oxygen Evolution Catalysis. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 23131-23139	9.5	40
146	Solid Synthesis of Ultrathin Palladium and Its Alloys Nanosheets on RGO with High Catalytic Activity for Oxygen Reduction Reaction. <i>ACS Catalysis</i> , 2018 , 8, 910-919	13.1	44
145	High-performance yttrium-iron alloy doped Pt-free catalysts on graphene for hydrogen evolution <i>RSC Advances</i> , 2018 , 8, 40866-40872	3.7	
144	Ultrathin porous Bi5O7X (X = Cl, Br, I) nanotubes for effective solar desalination. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 20037-20043	13	17
143	Atomic Platinum Skin under Synergy of Cobalt for Enhanced Methanol Oxidation Electrocatalysis. <i>ACS Applied Materials & Distributed & Di</i>	9.5	11
142	Hierarchically Ordered Nanochannel Array Membrane Reactor with Three-Dimensional Electrocatalytic Interfaces for Electrohydrogenation of CO2 to Alcohol. <i>ACS Energy Letters</i> , 2018 , 3, 264	9-265	5 ¹⁰
141	Vertex-Type Engineering of Pt-Cu-Rh Heterogeneous Nanocages for Highly Efficient Ethanol Electrooxidation. <i>Advanced Materials</i> , 2018 , 30, e1804074	24	66
140	Rational Design of Na4Fe3(PO4)2(P2O7) Nanoparticles Embedded in Graphene: Toward Fast Sodium Storage Through the Pseudocapacitive Effect. <i>ACS Applied Energy Materials</i> , 2018 , 1, 6268-6278	6.1	23
139	Two-step etching fabrication of tunable ternary rhombic dodecahedral nanoframes for enhanced oxygen reduction electrocatalysis. <i>Journal of Power Sources</i> , 2018 , 406, 42-49	8.9	22
138	Self-Assembled 3D Hierarchical Porous Hybrid as Platinum-Like Bifunctional Nonprecious Metal Catalyst toward Oxygen Reduction Reaction and Hydrogen Evolution Reaction. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1801296	4.6	5
137	Ultra-high surface area graphitic Fe-N-C nanospheres with single-atom iron sites as highly efficient non-precious metal bifunctional catalysts towards oxygen redox reactions. <i>Journal of Catalysis</i> , 2018 , 368, 279-290	7.3	67
136	High-Performance Asymmetric Supercapacitor Based on Hierarchical NiMn2O4@CoS CoreShell Microspheres and Stereotaxically Constricted Graphene. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 16933-16940	8.3	39
135	Facile Fabrication of Radial PtCo Nanodendrites for Enhanced Methanol Oxidation Electrocatalysis. <i>ACS Applied Nano Materials</i> , 2018 , 1, 5019-5026	5.6	19
134	PtNi alloy hyperbranched nanostructures with enhanced catalytic performance towards oxygen reduction reaction. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 18436-18443	6.7	11
133	Highly stable and efficient non-precious metal electrocatalysts of Mo-doped NiOOH nanosheets for oxygen evolution reaction. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 12140-12145	6.7	17
132	Carbon-Encapsulated WO Hybrids as Efficient Catalysts for Hydrogen Evolution. <i>Advanced Materials</i> , 2018 , 30, e1705979	24	104

131	One-step synthesis of Ni3S2 nanowires at low temperature as efficient electrocatalyst for hydrogen evolution reaction. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 7136-7142	6.7	50
130	Three-dimensional porous MoNi4 networks constructed by nanosheets as bifunctional electrocatalysts for overall water splitting. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 2508-2513	13	95
129	Tantalum Carbide Doped by Fluorine as Non-precious Metal Anodic Electrocatalyst Superior to Pt/C for Glycerol-Oxidation. <i>Electrochimica Acta</i> , 2017 , 227, 267-274	6.7	15
128	Ternary PtRhFe Nanoscale Alloys as Highly Efficient Catalysts with Enhanced Activity and Excellent CO-Poisoning Tolerance for Ethanol Oxidation. <i>ACS Applied Materials & District Amplied Mat</i>	5 9 1 ⁵	44
127	Highly stable and efficient non-precious metal electrocatalysts of tantalum dioxyfluoride used for the oxygen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 8287-8291	13	21
126	Nitrogen and fluorine dual-doped porous graphene-nanosheets as efficient metal-free electrocatalysts for hydrogen-evolution in acidic media. <i>Catalysis Science and Technology</i> , 2017 , 7, 2228-	-2235	31
125	Bifunctional porous non-precious metal WO2 hexahedral networks as an electrocatalyst for full water splitting. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 9655-9660	13	56
124	K0.4TaO2.4F0.6 Nanocubes as Highly Efficient Noble Metal-Free Electrocatalysts for Hydrogen Evolution Reaction in Acidic Media. <i>Electrochimica Acta</i> , 2017 , 245, 193-200	6.7	4
123	Heteroatoms dual doped porous graphene nanosheets as efficient bifunctional metal-free electrocatalysts for overall water-splitting. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 7784-7790	13	71
122	Ultrahigh capacity and superior stability of three-dimensional porous graphene networks containing in situ grown carbon nanotube clusters as an anode material for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 7595-7602	13	33
121	Sulfur impregnated N, P co-doped hierarchical porous carbon as cathode for high performance Li-S batteries. <i>Journal of Power Sources</i> , 2017 , 341, 165-174	8.9	125
120	Facile synthesis of a molybdenum phosphide (MoP) nanocomposite Pt support for high performance methanol oxidation. <i>Catalysis Science and Technology</i> , 2017 , 7, 5974-5981	5.5	18
119	Bimetallic PtAg alloyed nanoparticles and 3-D mesoporous graphene nanosheet hybrid architectures for advanced oxygen reduction reaction electrocatalysts. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 23158-23169	13	23
118	Templated and Catalytic Fabrication of N-Doped Hierarchical Porous Carbon-Carbon Nanotube Hybrids as Host for Lithium-Sulfur Batteries. <i>ACS Applied Materials & Discounty of the Patternature of the Patterna</i>	86 ⁵	54
117	High-Quality and Deeply Excavated Pt3Co Nanocubes as Efficient Catalysts for Liquid Fuel Electrooxidation. <i>Chemistry of Materials</i> , 2017 , 29, 9613-9617	9.6	58
116	Concave Platinum-Copper Octopod Nanoframes Bounded with Multiple High-Index Facets for Efficient Electrooxidation Catalysis. <i>ACS Nano</i> , 2017 , 11, 11946-11953	16.7	134
115	Atomic-Scale Preparation of Octopod Nanoframes with High-Index Facets as Highly Active and Stable Catalysts. <i>Advanced Materials</i> , 2017 , 29,	24	73
114	PtRh alloys on hybrid TiO2 ICarbon support as high efficiency catalyst for ethanol oxidation. International Journal of Hydrogen Energy, 2017, 42, 24689-24696	6.7	11

113	Crumpled nitrogen- and boron-dual-self-doped graphene sheets as an extraordinary active anode material for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 14155-14162	13	28
112	Small size Mo2C nanocrystal coupled with reduced graphene oxide enhance the electrochemical activity of palladium nanoparticles towards methanol oxidation reaction. <i>Catalysis Science and Technology</i> , 2016 , 6, 7316-7322	5.5	13
111	Well-defined PtNiCo coreShell nanodendrites with enhanced catalytic performance for methanol oxidation. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 18015-18021	13	56
110	Dye functionalized carbon nanotubes for photoelectrochemical water splitting Irole of inner tubes. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 2473-2483	13	23
109	Nitrogen-Doped Carbon-Encapsulated SnO2@Sn Nanoparticles Uniformly Grafted on Three-Dimensional Graphene-like Networks as Anode for High-Performance Lithium-Ion Batteries. <i>ACS Applied Materials & Discounty (Naterials & Discounty)</i> 197-207	9.5	73
108	Hydrogen evolution reaction in acidic media on single-crystalline titanium nitride nanowires as an efficient non-noble metal electrocatalyst. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 3673-3677	13	80
107	Facile synthesis of boron and nitrogen-dual-doped graphene sheets anchored platinum nanoparticles for oxygen reduction reaction. <i>Electrochimica Acta</i> , 2016 , 194, 276-282	6.7	31
106	A cost effective, highly porous, manganese oxide/carbon supercapacitor material with high rate capability. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 5390-5394	13	45
105	Monodisperse and self-assembled Pt-Cu nanoparticles as an efficient electrocatalyst for the methanol oxidation reaction. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 1579-1585	13	125
104	Unravelling the promoting effect of the ultrathin TaC/RGO nanosheet hybrid for enhanced catalytic activity of Pd nanoparticles. <i>Catalysis Science and Technology</i> , 2016 , 6, 7086-7093	5.5	13
103	Fluorine-Doped and Partially Oxidized Tantalum Carbides as Nonprecious Metal Electrocatalysts for Methanol Oxidation Reaction in Acidic Media. <i>Advanced Materials</i> , 2016 , 28, 2163-9	24	49
102	Porous MoO2 Nanosheets as Non-noble Bifunctional Electrocatalysts for Overall Water Splitting. <i>Advanced Materials</i> , 2016 , 28, 3785-90	24	584
101	Structurally confined ultrafine NiO nanoparticles on graphene as a highly efficient and durable electrode material for supercapacitors. <i>RSC Advances</i> , 2016 , 6, 51356-51366	3.7	13
100	Ranunculus flower-like Ni(OH)2@Mn2O3 as a high specific capacitance cathode material for alkaline supercapacitors. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 7591-7595	13	48
99	Ultrasmall molybdenum carbide nanocrystals coupled with reduced graphene oxide supported Pt nanoparticles as enhanced synergistic catalyst for methanol oxidation reaction. <i>Electrochimica Acta</i> , 2016 , 216, 295-303	6.7	10
98	Ultrathin PtCu hexapod nanocrystals with enhanced catalytic performance for electro-oxidation reactions. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 13425-13430	13	47
97	Exterior and small carbide particle promoted platinum electrocatalyst for efficient methanol oxidation. <i>RSC Advances</i> , 2016 , 6, 66665-66671	3.7	6
96	Direct synthesis of pure single-crystalline Magn[] phase Ti8O15 nanowires as conductive carbon-free materials for electrocatalysis. <i>Nanoscale</i> , 2015 , 7, 2856-61	7.7	25

95	Facial synthesis of porous hematite supported Pt catalyst and its photo enhanced electrocatalytic ethanol oxidation performance. <i>Electrochimica Acta</i> , 2015 , 168, 104-110	6.7	14
94	Ultrasmall metal oxide nanoparticles anchored on three-dimensional hierarchical porous gaphene-like networks as anode for high-performance lithium ion batteries. <i>Nano Energy</i> , 2015 , 13, 563	3-57 2	70
93	Direct growth of urchin-like ZnCo2O4 microspheres assembled from nanowires on nickel foam as high-performance electrodes for supercapacitors. <i>Electrochimica Acta</i> , 2015 , 169, 202-209	6.7	120
92	Carbon-Nanotubes-Supported Pd Nanoparticles for Alcohol Oxidations in Fuel Cells: Effect of Number of Nanotube Walls on Activity. <i>ChemSusChem</i> , 2015 , 8, 2956-66	8.3	35
91	Performance improvement of air electrode for Li/air batteries by hydrophobicity adjustment. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 11874-11879	13	15
90	Significance of wall number on the carbon nanotube support-promoted electrocatalytic activity of Pt NPs towards methanol/formic acid oxidation reactions in direct alcohol fuel cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 1961-1971	13	42
89	A bimetallic carbide Fe2MoC promoted Pd electrocatalyst with performance superior to Pt/C towards the oxygen reduction reaction in acidic media. <i>Applied Catalysis B: Environmental</i> , 2015 , 165, 636-641	21.8	46
88	Ce2O2S anchored on graphitized carbon with tunable architectures as a new promising anode for Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 10026-10030	13	7
87	Nanoflower-like metallic conductive MoO2 as a high-performance non-precious metal electrocatalyst for the hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 20080-20	0085	113
86	Hierarchical Mesoporous Zinc-Nickel-Cobalt Ternary Oxide Nanowire Arrays on Nickel Foam as High-Performance Electrodes for Supercapacitors. <i>ACS Applied Materials & Distriction (Communication)</i> , 7, 265	12:51	189
85	Self-assembled FeS2 cubes anchored on reduced graphene oxide as an anode material for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 2090-2096	13	102
84	Highly stable electrocatalysts supported on nitrogen-self-doped three-dimensional graphene-like networks with hierarchical porous structures. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 1492-1497	13	29
83	A cobalt phosphide on carbon decorated Pt catalyst with excellent electrocatalytic performance for direct methanol oxidation. <i>Journal of Power Sources</i> , 2015 , 275, 279-283	8.9	39
82	Magnli phase Ti8O15 nanowires as conductive carbon-free energy materials to enhance the electrochemical activity of palladium nanoparticles for direct ethanol oxidation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 14416-14423	13	25
81	Direct anchoring of platinum nanoparticles on nitrogen and phosphorus-dual-doped carbon nanotube arrays for oxygen reduction reaction. <i>Electrochimica Acta</i> , 2015 , 158, 374-382	6.7	30
80	FeN stabilized FeN@Pt coreShell nanostructures for oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 4462-4469	13	31
79	Si doped highly crystalline mesoporous In2O3 nanowires: synthesis, characterization and ultra-high response to NOx at room temperature. <i>RSC Advances</i> , 2015 , 5, 15515-15523	3.7	19
78	Synthesis of hierarchically flower-like FeWO 4 as high performance anode materials for Li-ion batteries by a simple hydrothermal process. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 16081-	160787	17

77	Nitrogen-self-doped graphene-based non-precious metal catalyst with superior performance to Pt/C catalyst toward oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 3231	13	66
76	One-step synthesis of Ni3S2 nanoparticles wrapped with in situ generated nitrogen-self-doped graphene sheets with highly improved electrochemical properties in Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 3142	13	116
75	Controllable synthesis of graphene supported MnO2 nanowires via self-assembly for enhanced water oxidation in both alkaline and neutral solutions. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 123-12	29 ¹³	52
74	A Co3W3C promoted Pd catalyst exhibiting competitive performance over Pt/C catalysts towards the oxygen reduction reaction. <i>Chemical Communications</i> , 2014 , 50, 566-8	5.8	49
73	Heterostructured Co3O4/PEI©NTs composite: fabrication, characterization and CO gas sensors at room temperature. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 4558-4565	13	47
72	Sulfur-infiltrated three-dimensional graphene-like material with hierarchical pores for highly stable lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 4528-4533	13	43
71	MoCgraphite composite as a Pt electrocatalyst support for highly active methanol oxidation and oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 4014	13	97
70	One-pot synthesis of Pd nanoparticles on ultrahigh surface area 3D porous carbon as hydrogen storage materials. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 14843-14850	6.7	22
69	One-pot synthesis of a nitrogen and phosphorus-dual-doped carbon nanotube array as a highly effective electrocatalyst for the oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 15448-15453	13	44
68	One-step synthesis of mesoporous Al2O3Ih2O3 nanofibres with remarkable gas-sensing performance to NOx at room temperature. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 949-956	13	76
67	An extremely stable MnO2 anode incorporated with 3D porous graphene-like networks for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 3163	13	82
66	Novel graphene-like nanosheet supported highly active electrocatalysts with ultralow Pt loadings for oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 16898-16904	13	17
65	Effect of nitrogen-containing functionalization on the electrocatalytic activity of PtRu nanoparticles supported on carbon nanotubes for direct methanol fuel cells. <i>Applied Catalysis B: Environmental</i> , 2014 , 158-159, 140-149	21.8	68
64	Pt loaded on truncated hexagonal pyramid WC/graphene for oxygen reduction reaction. <i>Nano Energy</i> , 2014 , 8, 52-61	17.1	42
63	A resin-based methodology to synthesize N-doped graphene-like metal-free catalyst for oxygen reduction. <i>Electrochimica Acta</i> , 2014 , 142, 182-186	6.7	16
62	Preparation and charaterization of Pt/functionalized graphene and its electrocatalysis for methanol oxidation. <i>Electrochimica Acta</i> , 2013 , 111, 275-283	6.7	42
61	Nanosized tungsten carbide synthesized by a novel route at low temperature for high performance electrocatalysis. <i>Scientific Reports</i> , 2013 , 3, 1646	4.9	8o
60	One-step synthesis of boron and nitrogen-dual-self-doped graphene sheets as non-metal catalysts for oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 14700	13	97

(2012-2013)

59	Nitrogen-self-doped graphene as a high capacity anode material for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 14586	13	35
58	Supported 3-D Pt nanostructures: the straightforward synthesis and enhanced electrochemical performance for methanol oxidation in an acidic medium. <i>Journal of Nanoparticle Research</i> , 2013 , 15, 1	2.3	1
57	Chelate resin self-assembled quaternary CoNPC catalyst for oxygen reduction reaction. <i>RSC Advances</i> , 2013 , 3, 14686	3.7	16
56	Stability analysis of oxide (CeO2, NiO, Co3O4 and Mn3O4) effect on Pd/C for methanol oxidation in alkaline medium. <i>Electrochimica Acta</i> , 2013 , 90, 108-111	6.7	78
55	Single-step pyrolytic preparation of Mo2C/graphitic carbon nanocomposite as catalyst carrier for the direct liquid-feed fuel cells. <i>RSC Advances</i> , 2013 , 3, 4771	3.7	26
54	A strategy for mass production of self-assembled nitrogen-doped graphene as catalytic materials. Journal of Materials Chemistry A, 2013, 1, 1401-1406	13	51
53	Vanadium carbide and graphite promoted Pd electrocatalyst for ethanol oxidation in alkaline media. <i>Journal of Power Sources</i> , 2013 , 243, 336-342	8.9	32
52	Pd supported on 2½ nm MoC particles with reduced particle size, synergistic effect and high stability for ethanol oxidation. <i>Electrochimica Acta</i> , 2013 , 108, 644-650	6.7	18
51	Synthesis of the nitrogen-doped carbon nanotube (NCNT) bouquets and their electrochemical properties. <i>Electrochemistry Communications</i> , 2013 , 35, 80-83	5.1	17
50	Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. <i>Advanced Materials</i> , 2013 , 25, 2474-	-8 6 4	594
49	Facile synthesis of FeS2 nanocrystals and their magnetic and electrochemical properties. <i>RSC Advances</i> , 2013 , 3, 6132	3.7	62
48	Rapid formation of nanoscale tungsten carbide on graphitized carbon for electrocatalysis. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 8154-8160	6.7	35
47	Nanostructured tungsten carbide/carbon composites synthesized by a microwave heating method as supports of platinum catalysts for methanol oxidation. <i>Journal of Power Sources</i> , 2012 , 202, 56-62	8.9	56
46	Biomimetic synthesis of silica hollow spheres using poly (L-lysine) and mechanism research. <i>RSC Advances</i> , 2012 , 2, 3288	3.7	15
45	Low temperature formation of porous graphitized carbon for electrocatalysis. <i>Journal of Materials Chemistry</i> , 2012 , 22, 2133-2139		71
44	A facile route to carbide-based electrocatalytic nanocomposites. <i>Journal of Materials Chemistry</i> , 2012 , 22, 5072		36
43	Porous SnS nanorods/carbon hybrid materials as highly stable and high capacity anode for Li-ion batteries. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2012 , 4, 4093-8	9.5	97
42	Hydrothermal growth of SnS2 hollow spheres and their electrochemical properties. <i>CrystEngComm</i> , 2012 , 14, 4279	3.3	73

41	Bimetallic carbide nanocomposite enhanced Pt catalyst with high activity and stability for the oxygen reduction reaction. <i>Journal of the American Chemical Society</i> , 2012 , 134, 1954-7	16.4	150
40	Small-sized and contacting Pt-WC nanostructures on graphene as highly efficient anode catalysts for direct methanol fuel cells. <i>Chemistry - A European Journal</i> , 2012 , 18, 7443-51	4.8	77
39	Ion-exchange-assisted synthesis of Pt-VC nanoparticles loaded on graphitized carbon: a high-performance nanocomposite electrocatalyst for oxygen-reduction reactions. <i>Chemistry - A European Journal</i> , 2012 , 18, 8490-7	4.8	25
38	Effect of the templates on the synthesis of hollow carbon materials as electrocatalyst supports for direct alcohol fuel cells. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 4728-4736	6.7	26
37	A brief consideration about the structural evolution of perfluorosulfonic-acid ionomer membranes. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 4657-4664	6.7	8
36	Tungsten carbide promoted Pd E e as alcohol-tolerant electrocatalysts for oxygen reduction reactions. <i>Energy and Environmental Science</i> , 2011 , 4, 558-563	35.4	119
35	Palladium thorn clusters as catalysts for electrooxidation of formic acid. <i>Energy and Environmental Science</i> , 2011 , 4, 1522	35.4	40
34	Electrodeposited palladium nanostructure as novel anode for direct formic acid fuel cell. <i>Journal of Materials Chemistry</i> , 2011 , 21, 11352		48
33	Oxygen reduction electrocatalysis enhanced by nanosized cubic vanadium carbide. <i>Electrochemistry Communications</i> , 2011 , 13, 763-765	5.1	60
32	A Highly Order-Structured Membrane Electrode Assembly with Vertically Aligned Carbon Nanotubes for Ultra-Low Pt Loading PEM Fuel Cells. <i>Advanced Energy Materials</i> , 2011 , 1, 1205-1214	21.8	136
31	Low-temperature Synthesis of Peony-like Spinel Li4Ti5O12 as a High-performance Anode Material for Lithium Ion Batteries. <i>Chinese Journal of Chemistry</i> , 2011 , 29, 1824-1828	4.9	5
30	An ion exchange route to produce carbon supported nanoscale vanadium carbide for electrocatalysis. <i>Journal of Materials Chemistry</i> , 2011 , 21, 19166		20
29	Synthesis of Pd on porous hollow carbon spheres as an electrocatalyst for alcohol electrooxidation. <i>RSC Advances</i> , 2011 , 1, 191	3.7	26
28	Tungsten carbide as supports for Pt electrocatalysts with improved CO tolerance in methanol oxidation. <i>Journal of Power Sources</i> , 2011 , 196, 6125-6130	8.9	107
27	Preparation and performance of nanosized tungsten carbides for electrocatalysis. <i>Electrochimica Acta</i> , 2010 , 55, 7969-7974	6.7	63
26	Intermittent microwave heating synthesized high performance spherical LiFePO4/C for Li-ion batteries. <i>Materials Research Bulletin</i> , 2010 , 45, 149-152	5.1	23
25	Self-sustainable production of hydrogen, chemicals, and energy from renewable alcohols by electrocatalysis. <i>ChemSusChem</i> , 2010 , 3, 851-5	8.3	88
24	Topotactic Conversion Route to Mesoporous Quasi-Single-Crystalline Co3O4 Nanobelts with Optimizable Electrochemical Performance. <i>Advanced Functional Materials</i> , 2010 , 20, 617-623	15.6	191

(2005-2010)

23	Hollow carbon hemispheres supported palladium electrocatalyst at improved performance for alcohol oxidation. <i>Journal of Power Sources</i> , 2010 , 195, 7146-7151	8.9	40
22	Pd nanoparticles supported on ultrahigh surface area honeycomb-like carbon for alcohol electrooxidation. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 3263-3269	6.7	37
21	The origin of the high performance of tungsten carbides/carbon nanotubes supported Pt catalysts for methanol electrooxidation. <i>Electrochemistry Communications</i> , 2009 , 11, 290-293	5.1	69
20	Nanochain-structured mesoporous tungsten carbide and its superior electrocatalysis. <i>Journal of Materials Chemistry</i> , 2009 , 19, 6149		55
19	Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. <i>Chemical Reviews</i> , 2009 , 109, 4183-206	68.1	1300
18	First-Principles Considerations on Catalytic Activity of Pd toward Ethanol Oxidation. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 15639-15642	3.8	109
17	Dynamic conducting effect of WO3/PFSA membranes on the performance of proton exchange membrane fuel cells. <i>Journal of Power Sources</i> , 2008 , 177, 56-60	8.9	16
16	Improved performance of Pd electrocatalyst supported on ultrahigh surface area hollow carbon spheres for direct alcohol fuel cells. <i>Journal of Power Sources</i> , 2008 , 177, 61-66	8.9	99
15	Improved kinetics of methanol oxidation on Pt/hollow carbon sphere catalysts. <i>Electrochimica Acta</i> , 2008 , 53, 8341-8345	6.7	57
14	Pt supported on highly graphitized lace-like carbon for methanol electrooxidation. <i>Carbon</i> , 2008 , 46, 531-536	10.4	33
13	Sodium borohydride hydrolysis on highly efficient Co B /Pd catalysts. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 4048-4054	6.7	65
12	Accurately measuring the hydrogen generation rate for hydrolysis of sodium borohydride on multiwalled carbon nanotubes/CoB catalysts. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 7110-7	79 7 5	105
11	Spontaneous formation of platinum particles on electrodeposited palladium. <i>Electrochemistry Communications</i> , 2007 , 9, 1563-1566	5.1	5
10	Pulse-microwave assisted polyol synthesis of highly dispersed high loading Pt/C electrocatalyst for oxygen reduction reaction. <i>Journal of Power Sources</i> , 2007 , 170, 46-49	8.9	69
9	Mechanistic study of ethanol oxidation on PdNiO/C electrocatalyst. <i>Electrochimica Acta</i> , 2006 , 52, 1087	-160 /9 1	136
8	Carbonized porous anodic alumina as electrocatalyst support for alcohol oxidation. <i>Electrochemistry Communications</i> , 2006 , 8, 1764-1768	5.1	41
7	The beneficial effect of the addition of tungsten carbides to Pt catalysts on the oxygen electroreduction. <i>Chemical Communications</i> , 2005 , 4408-10	5.8	94
6	Enhanced activity for ethanol electrooxidation on PtMgO/C catalysts. <i>Electrochemistry Communications</i> , 2005 , 7, 1305-1308	5.1	108

5	Synergistic effect of CeO2 modified Pt/C catalysts on the alcohols oxidation. <i>Electrochimica Acta</i> , 2005 , 51, 1031-1035	6.7	145
4	Preparation of high loading Pt supported on carbon by on-site reduction. <i>Journal of Materials Science</i> , 2004 , 39, 1507-1509	4.3	28
3	Performance of highly dispersed Pt/C catalysts for low temperature fuel cells. <i>Electrochimica Acta</i> , 2004 , 49, 3107-3111	6.7	56
2	Novel Pt/CeO2/C catalysts for electrooxidation of alcohols in alkaline media. <i>Chemical Communications</i> , 2004 , 2238-9	5.8	160
1	Recent development of Au arched Pt nanomaterials as promising electrocatalysts for methanol oxidation reaction. <i>Nano Research</i> ,1	10	7