List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/595579/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells and in Direct Alcohol Fuel Cells. Chemical Reviews, 2009, 109, 4183-4206.	23.0	1,486
2	Porous MoO ₂ Nanosheets as Nonâ€noble Bifunctional Electrocatalysts for Overall Water Splitting. Advanced Materials, 2016, 28, 3785-3790.	11.1	729
3	Simultaneous Formation of Ultrahigh Surface Area and Threeâ€Dimensional Hierarchical Porous Grapheneâ€Like Networks for Fast and Highly Stable Supercapacitors. Advanced Materials, 2013, 25, 2474-2480.	11.1	668
4	N-Doped Porous Molybdenum Carbide Nanobelts as Efficient Catalysts for Hydrogen Evolution Reaction. Applied Catalysis B: Environmental, 2018, 224, 533-540.	10.8	358
5	Mo- and Fe-Modified Ni(OH) ₂ /NiOOH Nanosheets as Highly Active and Stable Electrocatalysts for Oxygen Evolution Reaction. ACS Catalysis, 2018, 8, 2359-2363.	5.5	290
6	Hierarchical Mesoporous Zinc–Nickel–Cobalt Ternary Oxide Nanowire Arrays on Nickel Foam as High-Performance Electrodes for Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 26512-26521.	4.0	234
7	Topotactic Conversion Route to Mesoporous Quasiâ€Singleâ€Crystalline Co ₃ O ₄ Nanobelts with Optimizable Electrochemical Performance. Advanced Functional Materials, 2010, 20, 617-623.	7.8	202
8	Novel Pt/CeO2/C catalysts for electrooxidation of alcohols in alkaline media. Chemical Communications, 2004, , 2238.	2.2	173
9	Electronic modulation of cobalt phosphide nanosheet arrays via copper doping for highly efficient neutral-pH overall water splitting. Applied Catalysis B: Environmental, 2020, 265, 118555.	10.8	172
10	A Highly Orderâ€Structured Membrane Electrode Assembly with Vertically Aligned Carbon Nanotubes for Ultra‣ow Pt Loading PEM Fuel Cells. Advanced Energy Materials, 2011, 1, 1205-1214.	10.2	168
11	Concave Platinum–Copper Octopod Nanoframes Bounded with Multiple High-Index Facets for Efficient Electrooxidation Catalysis. ACS Nano, 2017, 11, 11946-11953.	7.3	167
12	Bimetallic Carbide Nanocomposite Enhanced Pt Catalyst with High Activity and Stability for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2012, 134, 1954-1957.	6.6	166
13	Synergistic effect of CeO2 modified Pt/C catalysts on the alcohols oxidation. Electrochimica Acta, 2005, 51, 1031-1035.	2.6	159
14	Sulfur impregnated N, P co-doped hierarchical porous carbon as cathode for high performance Li-S batteries. Journal of Power Sources, 2017, 341, 165-174.	4.0	157
15	Direct growth of urchin-like ZnCo2O4 microspheres assembled from nanowires on nickel foam as high-performance electrodes for supercapacitors. Electrochimica Acta, 2015, 169, 202-209.	2.6	149
16	Mechanistic study of ethanol oxidation on Pd–NiO/C electrocatalyst. Electrochimica Acta, 2006, 52, 1087-1091.	2.6	148
17	Monodisperse and self-assembled Pt-Cu nanoparticles as an efficient electrocatalyst for the methanol oxidation reaction. Journal of Materials Chemistry A, 2016, 4, 1579-1585.	5.2	148
18	Cross-double dumbbell-like Pt–Ni nanostructures with enhanced catalytic performance toward the reactions of oxygen reduction and methanol oxidation. Applied Catalysis B: Environmental, 2019, 246, 277-283.	10.8	145

#	Article	IF	CITATIONS
19	Carbonâ€Encapsulated WO <i>_x</i> Hybrids as Efficient Catalysts for Hydrogen Evolution. Advanced Materials, 2018, 30, e1705979.	11.1	140
20	Nanoflower-like metallic conductive MoO ₂ as a high-performance non-precious metal electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 20080-20085.	5.2	139
21	Nonprecious metal's grapheneâ€supported electrocatalysts for hydrogen evolution reaction: Fundamentals to applications. , 2020, 2, 99-121.		137
22	Carbon-Encapsulated Electrocatalysts for the Hydrogen Evolution Reaction. Electrochemical Energy Reviews, 2019, 2, 105-127.	13.1	136
23	One-step synthesis of Ni3S2 nanoparticles wrapped with in situ generated nitrogen-self-doped graphene sheets with highly improved electrochemical properties in Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 3142.	5.2	130
24	Self-assembled FeS ₂ cubes anchored on reduced graphene oxide as an anode material for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 2090-2096.	5.2	122
25	Three-dimensional porous MoNi ₄ networks constructed by nanosheets as bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 2508-2513.	5.2	122
26	Tungsten carbide promoted Pd–Fe as alcohol-tolerant electrocatalysts for oxygen reduction reactions. Energy and Environmental Science, 2011, 4, 558-563.	15.6	121
27	Enhanced activity for ethanol electrooxidation on Pt–MgO/C catalysts. Electrochemistry Communications, 2005, 7, 1305-1308.	2.3	118
28	First-Principles Considerations on Catalytic Activity of Pd toward Ethanol Oxidation. Journal of Physical Chemistry C, 2009, 113, 15639-15642.	1.5	117
29	Accurately measuring the hydrogen generation rate for hydrolysis of sodium borohydride on multiwalled carbon nanotubes/Coâ€ [®] B catalysts. International Journal of Hydrogen Energy, 2008, 33, 7110-7115.	3.8	116
30	Tungsten carbide as supports for Pt electrocatalysts with improved CO tolerance in methanol oxidation. Journal of Power Sources, 2011, 196, 6125-6130.	4.0	115
31	One-pot synthesized boron-doped RhFe alloy with enhanced catalytic performance for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2018, 230, 58-64.	10.8	112
32	Porous SnS Nanorods/Carbon Hybrid Materials as Highly Stable and High Capacity Anode for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 4093-4098.	4.0	111
33	Selfâ€Sustainable Production of Hydrogen, Chemicals, and Energy from Renewable Alcohols by Electrocatalysis. ChemSusChem, 2010, 3, 851-855.	3.6	110
34	Hydrogen evolution reaction in acidic media on single-crystalline titanium nitride nanowires as an efficient non-noble metal electrocatalyst. Journal of Materials Chemistry A, 2016, 4, 3673-3677.	5.2	109
35	Improved performance of Pd electrocatalyst supported on ultrahigh surface area hollow carbon spheres for direct alcohol fuel cells. Journal of Power Sources, 2008, 177, 61-66.	4.0	107
36	One-step synthesis of boron and nitrogen-dual-self-doped graphene sheets as non-metal catalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2013, 1, 14700.	5.2	107

#	Article	IF	CITATIONS
37	MoC–graphite composite as a Pt electrocatalyst support for highly active methanol oxidation and oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 4014.	5.2	106
38	Ultra-high surface area graphitic Fe-N-C nanospheres with single-atom iron sites as highly efficient non-precious metal bifunctional catalysts towards oxygen redox reactions. Journal of Catalysis, 2018, 368, 279-290.	3.1	105
39	Highly stable Pt-Co nanodendrite in nanoframe with Pt skin structured catalyst for oxygen reduction electrocatalysis. Applied Catalysis B: Environmental, 2021, 281, 119460.	10.8	105
40	Novel Biâ€Ðoped Amorphous SnO <i>_x</i> Nanoshells for Efficient Electrochemical CO ₂ Reduction into Formate at Low Overpotentials. Advanced Materials, 2020, 32, e2002822.	11.1	104
41	Emerging artificial nitrogen cycle processes through novel electrochemical and photochemical synthesis. Materials Today, 2021, 46, 212-233.	8.3	104
42	N, S Codoped Carbon Matrixâ€Encapsulated Co ₉ S ₈ Nanoparticles as a Highly Efficient and Durable Bifunctional Oxygen Redox Electrocatalyst for Rechargeable Zn–Air Batteries. Advanced Energy Materials, 2021, 11, 2101249.	10.2	102
43	Recent advances in graphene-based platinum and palladium electrocatalysts for the methanol oxidation reaction. Journal of Materials Chemistry A, 2019, 7, 22189-22217.	5.2	100
44	Spinel NiCo2O4 3-D nanoflowers supported on graphene nanosheets as efficient electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 16120-16131.	3.8	99
45	Vertex‶ype Engineering of Pt–Cu–Rh Heterogeneous Nanocages for Highly Efficient Ethanol Electrooxidation. Advanced Materials, 2018, 30, e1804074.	11.1	98
46	The beneficial effect of the addition of tungsten carbides to Pt catalysts on the oxygen electroreduction. Chemical Communications, 2005, , 4408.	2.2	97
47	Heteroatoms dual doped porous graphene nanosheets as efficient bifunctional metal-free electrocatalysts for overall water-splitting. Journal of Materials Chemistry A, 2017, 5, 7784-7790.	5.2	95
48	Nanosized tungsten carbide synthesized by a novel route at low temperature for high performance electrocatalysis. Scientific Reports, 2013, 3, 1646.	1.6	93
49	An extremely stable MnO2 anode incorporated with 3D porous graphene-like networks for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 3163.	5.2	91
50	Recent Progress in Graphene-Based Nanostructured Electrocatalysts for Overall Water Splitting. Electrochemical Energy Reviews, 2020, 3, 370-394.	13.1	90
51	Stability analysis of oxide (CeO2, NiO, Co3O4 and Mn3O4) effect on Pd/C for methanol oxidation in alkaline medium. Electrochimica Acta, 2013, 90, 108-111.	2.6	89
52	Atomicâ€Scale Preparation of Octopod Nanoframes with Highâ€Index Facets as Highly Active and Stable Catalysts. Advanced Materials, 2017, 29, .	11.1	89
53	Gram-Scale production of Cu3P-Cu2O Janus nanoparticles into nitrogen and phosphorous doped porous carbon framework as bifunctional electrocatalysts for overall water splitting. Chemical Engineering Journal, 2022, 427, 130946.	6.6	88
54	One-step synthesis of mesoporous Al ₂ O ₃ –In ₂ O ₃ nanofibres with remarkable gas-sensing performance to NO _x at room temperature. Journal of Materials Chemistry A, 2014, 2, 949-956.	5.2	84

#	Article	IF	CITATIONS
55	Nitrogen-Doped Carbon-Encapsulated SnO ₂ @Sn Nanoparticles Uniformly Grafted on Three-Dimensional Graphene-like Networks as Anode for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 197-207.	4.0	84
56	Hydrothermal growth of SnS2 hollow spheres and their electrochemical properties. CrystEngComm, 2012, 14, 4279.	1.3	83
57	Small‣ized and Contacting Pt–WC Nanostructures on Graphene as Highly Efficient Anode Catalysts for Direct Methanol Fuel Cells. Chemistry - A European Journal, 2012, 18, 7443-7451.	1.7	83
58	Highly Efficient Multifunctional Co–N–C Electrocatalysts with Synergistic Effects of Co–N Moieties and Co Metallic Nanoparticles Encapsulated in a N-Doped Carbon Matrix for Water-Splitting and Oxygen Redox Reactions. ACS Applied Materials & Interfaces, 2019, 11, 39809-39819.	4.0	80
59	Ultrasmall metal oxide nanoparticles anchored on three-dimensional hierarchical porous gaphene-like networks as anode for high-performance lithium ion batteries. Nano Energy, 2015, 13, 563-572.	8.2	78
60	Boosting Electrocatalytic Activity of Single Atom Catalysts Supported on Nitrogenâ€Doped Carbon through N Coordination Environment Engineering. Small, 2022, 18, e2105329.	5.2	78
61	Pulse-microwave assisted polyol synthesis of highly dispersed high loading Pt/C electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 2007, 170, 46-49.	4.0	77
62	Low temperature formation of porous graphitized carbon for electrocatalysis. Journal of Materials Chemistry, 2012, 22, 2133-2139.	6.7	77
63	Facile synthesis of FeS2 nanocrystals and their magnetic and electrochemical properties. RSC Advances, 2013, 3, 6132.	1.7	76
64	Effect of nitrogen-containing functionalization on the electrocatalytic activity of PtRu nanoparticles supported on carbon nanotubes for direct methanol fuel cells. Applied Catalysis B: Environmental, 2014, 158-159, 140-149.	10.8	76
65	Self-assembled superstructure of carbon-wrapped, single-crystalline Cu3P porous nanosheets: One-step synthesis and enhanced Li-ion battery anode performance. Energy Storage Materials, 2018, 15, 75-81.	9.5	75
66	Nitrogen-self-doped graphene-based non-precious metal catalyst with superior performance to Pt/C catalyst toward oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 3231.	5.2	74
67	The origin of the high performance of tungsten carbides/carbon nanotubes supported Pt catalysts for methanol electrooxidation. Electrochemistry Communications, 2009, 11, 290-293.	2.3	73
68	Sodium borohydride hydrolysis on highly efficient Co–B/Pd catalysts. International Journal of Hydrogen Energy, 2008, 33, 4048-4054.	3.8	72
69	Bifunctional porous non-precious metal WO ₂ hexahedral networks as an electrocatalyst for full water splitting. Journal of Materials Chemistry A, 2017, 5, 9655-9660.	5.2	72
70	Three-dimensional, hetero-structured, Cu ₃ P@C nanosheets with excellent cycling stability as Na-ion battery anode material. Journal of Materials Chemistry A, 2019, 7, 16999-17007.	5.2	71
71	Well-defined PtNiCo core–shell nanodendrites with enhanced catalytic performance for methanol oxidation. Journal of Materials Chemistry A, 2016, 4, 18015-18021.	5.2	70
72	Bifunctional catalysts for overall water splitting: CoNi oxyhydroxide nanosheets electrodeposited on titanium sheets. Electrochimica Acta, 2019, 301, 449-457.	2.6	70

#	Article	IF	CITATIONS
73	Bimetallic Ni‒Co phosphide nanosheets self-supported on nickel foam as high-performance electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2019, 317, 191-198.	2.6	69
74	NiCo2S4 nanocores in-situ encapsulated in graphene sheets as anode materials for lithium-ion batteries. Chemical Engineering Journal, 2019, 364, 167-176.	6.6	68
75	High-Quality and Deeply Excavated Pt ₃ Co Nanocubes as Efficient Catalysts for Liquid Fuel Electrooxidation. Chemistry of Materials, 2017, 29, 9613-9617.	3.2	67
76	Chestnut-like copper cobalt phosphide catalyst for all-pH hydrogen evolution reaction and alkaline water electrolysis. Journal of Materials Chemistry A, 2019, 7, 14271-14279.	5.2	67
77	Oxygen reduction electrocatalysis enhanced by nanosized cubic vanadium carbide. Electrochemistry Communications, 2011, 13, 763-765.	2.3	66
78	Templated and Catalytic Fabrication of N-Doped Hierarchical Porous Carbon–Carbon Nanotube Hybrids as Host for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 33876-33886.	4.0	66
79	Preparation and performance of nanosized tungsten carbides for electrocatalysis. Electrochimica Acta, 2010, 55, 7969-7974.	2.6	65
80	High-Performance Asymmetric Supercapacitor Based on Hierarchical NiMn ₂ O ₄ @CoS Core–Shell Microspheres and Stereotaxically Constricted Graphene. ACS Sustainable Chemistry and Engineering, 2018, 6, 16933-16940.	3.2	65
81	MoP-Mo2C quantum dot heterostructures uniformly hosted on a heteroatom-doped 3D porous carbon sheet network as an efficient bifunctional electrocatalyst for overall water splitting. Chemical Engineering Journal, 2022, 431, 133719.	6.6	64
82	Fluorineâ€Doped and Partially Oxidized Tantalum Carbides as Nonprecious Metal Electrocatalysts for Methanol Oxidation Reaction in Acidic Media. Advanced Materials, 2016, 28, 2163-2169.	11.1	63
83	Performance of highly dispersed Pt/C catalysts for low temperature fuel cells. Electrochimica Acta, 2004, 49, 3107-3111.	2.6	62
84	Facile synthesis of bimetallic Pt-Pd symmetry-broken concave nanocubes and their enhanced activity toward oxygen reduction reaction. Applied Catalysis B: Environmental, 2019, 251, 49-56.	10.8	62
85	One-step synthesis of Ni3S2 nanowires at low temperature as efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 7136-7142.	3.8	61
86	Worm-like S-doped RhNi alloys as highly efficient electrocatalysts for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2019, 255, 117737.	10.8	61
87	Improved kinetics of methanol oxidation on Pt/hollow carbon sphere catalysts. Electrochimica Acta, 2008, 53, 8341-8345.	2.6	60
88	A Co ₃ W ₃ C promoted Pd catalyst exhibiting competitive performance over Pt/C catalysts towards the oxygen reduction reaction. Chemical Communications, 2014, 50, 566-568.	2.2	60
89	Remarkable enhancement in the electrochemical activity of maricite NaFePO4 on high-surface-area carbon cloth for sodium-ion batteries. Carbon, 2019, 146, 78-87.	5.4	60
90	Nanostructured tungsten carbide/carbon composites synthesized by a microwave heating method as supports of platinum catalysts for methanol oxidation. Journal of Power Sources, 2012, 202, 56-62.	4.0	59

#	Article	IF	CITATIONS
91	Controllable synthesis of graphene supported MnO ₂ nanowires via self-assembly for enhanced water oxidation in both alkaline and neutral solutions. Journal of Materials Chemistry A, 2014, 2, 123-129.	5.2	59
92	Fe and Co dual-doped Ni3S4 nanosheet with enriched high-valence Ni sites for efficient oxygen evolution reaction. Chemical Engineering Journal, 2022, 427, 130742.	6.6	59
93	Nanochain-structured mesoporous tungsten carbide and its superior electrocatalysis. Journal of Materials Chemistry, 2009, 19, 6149.	6.7	58
94	Simultaneous formation of trimetallic Pt-Ni-Cu excavated rhombic dodecahedrons with enhanced catalytic performance for the methanol oxidation reaction. Nano Research, 2018, 11, 4786-4795.	5.8	58
95	Recent development of Au arched Pt nanomaterials as promising electrocatalysts for methanol oxidation reaction. Nano Research, 2022, 15, 18-37.	5.8	58
96	A strategy for mass production of self-assembled nitrogen-doped graphene as catalytic materials. Journal of Materials Chemistry A, 2013, 1, 1401-1406.	5.2	57
97	Ultrathin PtCu hexapod nanocrystals with enhanced catalytic performance for electro-oxidation reactions. Journal of Materials Chemistry A, 2016, 4, 13425-13430.	5.2	57
98	Ternary Pt ₉ RhFe _{<i>x</i>} Nanoscale Alloys as Highly Efficient Catalysts with Enhanced Activity and Excellent CO-Poisoning Tolerance for Ethanol Oxidation. ACS Applied Materials & Interfaces, 2017, 9, 9584-9591.	4.0	57
99	Asymmetric 3d Electronic Structure for Enhanced Oxygen Evolution Catalysis. ACS Applied Materials & Interfaces, 2018, 10, 23131-23139.	4.0	57
100	Electricity Generation from Capillary-Driven Ionic Solution Flow in a Three-Dimensional Graphene Membrane. ACS Applied Materials & amp; Interfaces, 2019, 11, 4922-4929.	4.0	57
101	A bimetallic carbide Fe2MoC promoted Pd electrocatalyst with performance superior to Pt/C towards the oxygen reduction reaction in acidic media. Applied Catalysis B: Environmental, 2015, 165, 636-641.	10.8	56
102	A cost effective, highly porous, manganese oxide/carbon supercapacitor material with high rate capability. Journal of Materials Chemistry A, 2016, 4, 5390-5394.	5.2	56
103	Solid Synthesis of Ultrathin Palladium and Its Alloys' Nanosheets on RGO with High Catalytic Activity for Oxygen Reduction Reaction. ACS Catalysis, 2018, 8, 910-919.	5.5	56
104	Molecular-level design of Fe-N-C catalysts derived from Fe-dual pyridine coordination complexes for highly efficient oxygen reduction. Journal of Catalysis, 2019, 372, 245-257.	3.1	56
105	Graphene Nanosphere as Advanced Electrode Material to Promote High Performance Symmetrical Supercapacitor. Small, 2021, 17, e2007915.	5.2	56
106	Ranunculus flower-like Ni(OH) ₂ @Mn ₂ O ₃ as a high specific capacitance cathode material for alkaline supercapacitors. Journal of Materials Chemistry A, 2016, 4, 7591-7595.	5.2	55
107	One-step growth of nitrogen-decorated iron–nickel sulfide nanosheets for the oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 5592-5597.	5.2	55
108	Electrocatalytic production of ammonia: Biomimetic electrode–electrolyte design for efficient electrocatalytic nitrogen fixation under ambient conditions. Applied Catalysis B: Environmental, 2020, 271, 118919.	10.8	55

#	Article	IF	CITATIONS
109	One-pot synthesis of a nitrogen and phosphorus-dual-doped carbon nanotube array as a highly effective electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 15448-15453.	5.2	54
110	Three-dimensional graphene sheets with NiO nanobelt outgrowths for enhanced capacity and long term high rate cycling Li-ion battery anode material. Journal of Power Sources, 2018, 379, 362-370.	4.0	53
111	Metal-free mesoporous carbon with higher contents of active N and S codoping by template method for superior ORR efficiency to Pt/C. International Journal of Hydrogen Energy, 2018, 43, 3705-3715.	3.8	52
112	Electrodeposited palladium nanostructure as novel anode for direct formic acid fuel cell. Journal of Materials Chemistry, 2011, 21, 11352.	6.7	51
113	Sulfur-infiltrated three-dimensional graphene-like material with hierarchical pores for highly stable lithium–sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 4528-4533.	5.2	51
114	Heterostructured Co3O4/PEI–CNTs composite: fabrication, characterization and CO gas sensors at room temperature. Journal of Materials Chemistry A, 2014, 2, 4558-4565.	5.2	49
115	Excavated and dendritic Pt-Co nanocubes as efficient ethylene glycol and glycerol oxidation electrocatalysts. Applied Catalysis B: Environmental, 2019, 258, 117951.	10.8	48
116	Hierarchically skeletal multi-layered Pt-Ni nanocrystals for highly efficient oxygen reduction and methanol oxidation reactions. Chinese Journal of Catalysis, 2021, 42, 648-657.	6.9	48
117	Pt loaded on truncated hexagonal pyramid WC/graphene for oxygen reduction reaction. Nano Energy, 2014, 8, 52-61.	8.2	47
118	Significance of wall number on the carbon nanotube support-promoted electrocatalytic activity of Pt NPs towards methanol/formic acid oxidation reactions in direct alcohol fuel cells. Journal of Materials Chemistry A, 2015, 3, 1961-1971.	5.2	47
119	In situ carbon nanotube clusters grown from three-dimensional porous graphene networks as efficient sulfur hosts for high-rate ultra-stable Li–S batteries. Nano Research, 2018, 11, 1731-1743.	5.8	45
120	Ultrahigh energy density asymmetric electrochemical capacitors based on flower-like ZnO/Co ₃ O ₄ nanobundle arrays and stereotaxically constricted graphene. Journal of Materials Chemistry A, 2019, 7, 1273-1280.	5.2	45
121	Palladium thorn clusters as catalysts for electrooxidation of formic acid. Energy and Environmental Science, 2011, 4, 1522.	15.6	44
122	A cobalt phosphide on carbon decorated Pt catalyst with excellent electrocatalytic performance for direct methanol oxidation. Journal of Power Sources, 2015, 275, 279-283.	4.0	44
123	Hollow carbon hemispheres supported palladium electrocatalyst at improved performance for alcohol oxidation. Journal of Power Sources, 2010, 195, 7146-7151.	4.0	43
124	Preparation and charaterization of Pt/functionalized graphene and its electrocatalysis for methanol oxidation. Electrochimica Acta, 2013, 111, 275-283.	2.6	43
125	Rational Design and Synthesis of Hierarchical Porous Mn–N–C Nanoparticles with Atomically Dispersed MnN <i>_x</i> Moieties for Highly Efficient Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 9367-9376.	3.2	43
126	Ultrahigh capacity and superior stability of three-dimensional porous graphene networks containing in situ grown carbon nanotube clusters as an anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 7595-7602.	5.2	42

#	Article	IF	CITATIONS
127	MnS@N,S Coâ€Doped Carbon Core/Shell Nanocubes: Sulfurâ€Bridged Bonds Enhanced Naâ€Storage Properties Revealed by In Situ Raman Spectroscopy and Transmission Electron Microscopy. Small, 2020, 16, e2003001.	5.2	42
128	Carbonized porous anodic alumina as electrocatalyst support for alcohol oxidation. Electrochemistry Communications, 2006, 8, 1764-1768.	2.3	41
129	Pt supported on highly graphitized lace-like carbon for methanol electrooxidation. Carbon, 2008, 46, 531-536.	5.4	41
130	Facile synthesis of boron and nitrogen-dual-doped graphene sheets anchored platinum nanoparticles for oxygen reduction reaction. Electrochimica Acta, 2016, 194, 276-282.	2.6	41
131	P-doped CNTs encapsulated nickel hybrids with flower-like structure as efficient catalysts for hydrogen evolution reaction. Electrochimica Acta, 2019, 298, 142-149.	2.6	41
132	Nitrogen-self-doped graphene as a high capacity anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 14586.	5.2	40
133	Direct anchoring of platinum nanoparticles on nitrogen and phosphorus-dual-doped carbon nanotube arrays for oxygen reduction reaction. Electrochimica Acta, 2015, 158, 374-382.	2.6	40
134	Molybdenum-modified and vertex-reinforced quaternary hexapod nano-skeletons as efficient electrocatalysts for methanol oxidation and oxygen reduction reaction. Applied Catalysis B: Environmental, 2019, 258, 117974.	10.8	40
135	Carbonâ€Nanotubesâ€Supported Pd Nanoparticles for Alcohol Oxidations in Fuel Cells: Effect of Number of Nanotube Walls on Activity. ChemSusChem, 2015, 8, 2956-2966.	3.6	39
136	Pd nanoparticles supported on ultrahigh surface area honeycomb-like carbon for alcohol electrooxidation. International Journal of Hydrogen Energy, 2010, 35, 3263-3269.	3.8	38
137	Rapid formation of nanoscale tungsten carbide on graphitized carbon for electrocatalysis. International Journal of Hydrogen Energy, 2012, 37, 8154-8160.	3.8	38
138	Shell-thickness-dependent Pd@PtNi core–shell nanosheets for efficient oxygen reduction reaction. Chemical Engineering Journal, 2022, 427, 131565.	6.6	38
139	A facile route to carbide-based electrocatalytic nanocomposites. Journal of Materials Chemistry, 2012, 22, 5072.	6.7	37
140	FeN stabilized FeN@Pt core–shell nanostructures for oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 4462-4469.	5.2	37
141	Nitrogen and fluorine dual-doped porous graphene-nanosheets as efficient metal-free electrocatalysts for hydrogen-evolution in acidic media. Catalysis Science and Technology, 2017, 7, 2228-2235.	2.1	37
142	Rational Design of Na ₄ Fe ₃ (PO ₄) ₂ (P ₂ O ₇) Nanoparticles Embedded in Graphene: Toward Fast Sodium Storage Through the Pseudocapacitive Effect, ACS Applied Energy Materials, 2018, 1, 6268-6278.	2.5	37
143	One-Pot Synthesis of Pt–Pd Bimetallic Nanodendrites with Enhanced Electrocatalytic Activity for Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 8419-8428.	3.2	37
144	Designing highly efficient 3D porous Ni-Fe sulfide nanosheets based catalyst for the overall water splitting through component regulation. Journal of Colloid and Interface Science, 2022, 616, 422-432.	5.0	37

#	Article	IF	CITATIONS
145	The controllable growth of PtCuRh rhombic dodecahedral nanoframes as efficient catalysts for alcohol electrochemical oxidation. Journal of Materials Chemistry A, 2019, 7, 18619-18625.	5.2	36
146	Amorphous metallic ultrathin nanostructures: A latent ultra-high-density atomic-level catalyst for electrochemical energy conversion. International Journal of Hydrogen Energy, 2022, 47, 26956-26977.	3.8	35
147	Highly stable electrocatalysts supported on nitrogen-self-doped three-dimensional graphene-like networks with hierarchical porous structures. Journal of Materials Chemistry A, 2015, 3, 1492-1497.	5.2	34
148	Bimetallic PtAg alloyed nanoparticles and 3-D mesoporous graphene nanosheet hybrid architectures for advanced oxygen reduction reaction electrocatalysts. Journal of Materials Chemistry A, 2017, 5, 23158-23169.	5.2	34
149	Vanadium carbide and graphite promoted Pd electrocatalyst for ethanol oxidation in alkaline media. Journal of Power Sources, 2013, 243, 336-342.	4.0	33
150	Direct synthesis of pure single-crystalline Magnéli phase Ti ₈ O ₁₅ nanowires as conductive carbon-free materials for electrocatalysis. Nanoscale, 2015, 7, 2856-2861.	2.8	32
151	Crumpled nitrogen- and boron-dual-self-doped graphene sheets as an extraordinary active anode material for lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 14155-14162.	5.2	32
152	Synthesis and characterization of activated 3D graphene via catalytic growth and chemical activation for electrochemical energy storage in supercapacitors. Electrochimica Acta, 2019, 324, 134878.	2.6	32
153	Preparation of high loading Pt supported on carbon by on-site reduction. Journal of Materials Science, 2004, 39, 1507-1509.	1.7	30
154	Synthesis of Pd on porous hollow carbon spheres as an electrocatalyst for alcohol electrooxidation. RSC Advances, 2011, 1, 191.	1.7	30
155	A facile and cost effective synthesis of nitrogen and fluorine Co-doped porous carbon for high performance Sodium ion battery anode material. Journal of Power Sources, 2020, 448, 227568.	4.0	30
156	Effect of the templates on the synthesis of hollow carbon materials as electrocatalyst supports for direct alcohol fuel cells. International Journal of Hydrogen Energy, 2012, 37, 4728-4736.	3.8	29
157	Synthesis of hierarchically flower-like FeWO 4 as high performance anode materials for Li-ion batteries by a simple hydrothermal process. International Journal of Hydrogen Energy, 2014, 39, 16081-16087.	3.8	29
158	Magnéli phase Ti ₈ O ₁₅ nanowires as conductive carbon-free energy materials to enhance the electrochemical activity of palladium nanoparticles for direct ethanol oxidation. Journal of Materials Chemistry A, 2015, 3, 14416-14423.	5.2	29
159	Highly stable and efficient non-precious metal electrocatalysts of tantalum dioxyfluoride used for the oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 8287-8291.	5.2	29
160	One-step solid state synthesis of PtCo nanocubes/graphene nanocomposites as advanced oxygen reduction reaction electrocatalysts. Journal of Catalysis, 2018, 362, 85-93.	3.1	29
161	A novel boron and nitrogen co-doped three-dimensional porous graphene sheet framework as high performance Li-ion battery anode material. Inorganic Chemistry Communication, 2018, 96, 159-164.	1.8	29
162	Template-free growth of spherical vanadium disulfide nanoflowers as efficient anodes for sodium/potassium ion batteries. Materials and Design, 2020, 192, 108780.	3.3	29

#	Article	IF	CITATIONS
163	Ionâ€Exchangeâ€Assisted Synthesis of Ptâ€VC Nanoparticles Loaded on Graphitized Carbon: A Highâ€Performance Nanocomposite Electrocatalyst for Oxygenâ€Reduction Reactions. Chemistry - A European Journal, 2012, 18, 8490-8497.	1.7	28
164	Facile synthesis of a molybdenum phosphide (MoP) nanocomposite Pt support for high performance methanol oxidation. Catalysis Science and Technology, 2017, 7, 5974-5981.	2.1	28
165	Boosting the photocatalytic activity of mesoporous SrTiO ₃ for nitrogen fixation through multiple defects and strain engineering. Journal of Materials Chemistry A, 2020, 8, 22251-22256.	5.2	28
166	Intermittent microwave heating synthesized high performance spherical LiFePO4/C for Li-ion batteries. Materials Research Bulletin, 2010, 45, 149-152.	2.7	27
167	Single-step pyrolytic preparation of Mo2C/graphitic carbon nanocomposite as catalyst carrier for the direct liquid-feed fuel cells. RSC Advances, 2013, 3, 4771.	1.7	27
168	Dye functionalized carbon nanotubes for photoelectrochemical water splitting – role of inner tubes. Journal of Materials Chemistry A, 2016, 4, 2473-2483.	5.2	27
169	Two-step etching fabrication of tunable ternary rhombic dodecahedral nanoframes for enhanced oxygen reduction electrocatalysis. Journal of Power Sources, 2018, 406, 42-49.	4.0	27
170	Graphitized carbon nanocages/palladium nanoparticles: Sustainable preparation and electrocatalytic performances towards ethanol oxidation reaction. International Journal of Hydrogen Energy, 2019, 44, 6172-6181.	3.8	27
171	One-Pot Fabrication of Site-Selective Hexapod PtPdCu Concave Rhombic Dodecahedrons as Highly Efficient Catalysts for Electrocatalysis. ACS Sustainable Chemistry and Engineering, 2020, 8, 1520-1526.	3.2	27
172	Toward a High-Energy-Density Cathode with Enhanced Temperature Adaptability for Sodium-Ion Batteries: A Case Study of Na ₃ MnZr(PO ₄) ₃ Microspheres with Embedded Dual-Carbon Networks. ACS Applied Materials & Interfaces, 2021, 13, 21390-21400.	4.0	27
173	Ru doping NiCoP hetero-nanowires with modulated electronic structure for efficient overall water splitting. Journal of Colloid and Interface Science, 2022, 610, 213-220.	5.0	27
174	Facile Fabrication of Radial PtCo Nanodendrites for Enhanced Methanol Oxidation Electrocatalysis. ACS Applied Nano Materials, 2018, 1, 5019-5026.	2.4	26
175	Highly stable and efficient non-precious metal electrocatalysts of Mo-doped NiOOH nanosheets for oxygen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 12140-12145.	3.8	26
176	General Strategy To Synthesize Highly Dense Metal Oxide Quantum Dots-Anchored Nitrogen-Rich Graphene Compact Monoliths To Enable Fast and High-Stability Volumetric Lithium/Sodium Storage. ACS Applied Energy Materials, 2019, 2, 3500-3512.	2.5	26
177	In-situ encapsulating FeS/Fe3C nanoparticles into nitrogen-sulfur dual-doped graphene networks for high-rate and ultra-stable lithium storage. Journal of Alloys and Compounds, 2019, 779, 193-201.	2.8	26
178	Self-Assembled Nanofiber Networks of Well-Separated B and N Codoped Carbon as Pt Supports for Highly Efficient and Stable Oxygen Reduction Electrocatalysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 660-668.	3.2	26
179	Facile one-step in-situ encapsulation of non-noble metal Co2P nanoparticles embedded into B, N, P tri-doped carbon nanotubes for efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 24312-24321.	3.8	26
180	Highly efficient PtCo nanoparticles on Co–N–C nanorods with hierarchical pore structure for oxygen reduction reaction. International Journal of Hydrogen Energy, 2021, 46, 15991-16002.	3.8	26

#	ARTICLE	IF	CITATIONS
181	Enhanced electrocatalytic overall water splitting over novel one-pot synthesized Ru–MoO3- and Fe3O4–NiFe layered double hydroxide on Ni foam. Renewable Energy, 2021, 177, 1346-1355.	4.3	26
182	Enhanced oxygen reduction and methanol oxidation reaction over self-assembled Pt-M (MÂ=ÂCo, Ni) nanoflowers. Journal of Colloid and Interface Science, 2022, 607, 1411-1423.	5.0	26
183	One-pot synthesis of Pd nanoparticles on ultrahigh surface area 3D porous carbon as hydrogen storage materials. International Journal of Hydrogen Energy, 2014, 39, 14843-14850.	3.8	25
184	Ultrathin porous Bi ₅ O ₇ X (X = Cl, Br, I) nanotubes for effective solar desalination. Journal of Materials Chemistry A, 2018, 6, 20037-20043.	5.2	24
185	Controllable preparation of nitrogen-doped graphitized carbon from molecular precursor as non-metal oxygen evolution reaction electrocatalyst. Applied Surface Science, 2019, 491, 723-734.	3.1	24
186	ZIFâ€Mg(OH) ₂ Dual Template Assisted Self onfinement of Small PtCo NPs as Promising Oxygen Reduction Reaction in PEM Fuel Cell. Advanced Energy Materials, 2022, 12, .	10.2	24
187	Highly efficient Pt-Co alloy hollow spheres with ultra-thin shells synthesized via Co-B-O complex as intermediates for hydrogen evolution reaction. Journal of Catalysis, 2020, 381, 385-394.	3.1	23
188	Ultrathin-shell IrCo hollow nanospheres as highly efficient electrocatalysts towards the oxygen evolution reaction in acidic media. Nanoscale, 2020, 12, 24070-24078.	2.8	23
189	One-dimensional core–shell motif nanowires with chemically-bonded transition metal sulfide-carbon heterostructures for efficient sodium-ion storage. Chemical Science, 2021, 12, 15054-15060.	3.7	23
190	Low temperature synthesis of polyhedral hollow porous carbon with high rate capability and long-term cycling stability as Li-ion and Na-ion battery anode material. Journal of Power Sources, 2018, 398, 149-158.	4.0	22
191	In situ molecular-level synthesis of N, S co-doped carbon as efficient metal-free oxygen redox electrocatalysts for rechargeable Zn–Air batteries. Applied Materials Today, 2020, 20, 100737.	2.3	22
192	Hyperbranched concave octahedron of PtIrCu nanocrystals with high-index facets for efficiently electrochemical ammonia oxidation reaction. Journal of Colloid and Interface Science, 2021, 601, 1-11.	5.0	22
193	Hollow porous carbon spheres for high initial coulombic efficiency and low-potential sodium ion storage. Journal of Colloid and Interface Science, 2021, 604, 168-177.	5.0	22
194	Ni activated Mo2C nanoparticles supported on stereotaxically-constructed graphene for efficient overall water splitting. International Journal of Hydrogen Energy, 2022, 47, 761-771.	3.8	22
195	An ion exchange route to produce carbon supported nanoscale vanadium carbide for electrocatalysis. Journal of Materials Chemistry, 2011, 21, 19166.	6.7	21
196	Novel graphene-like nanosheet supported highly active electrocatalysts with ultralow Pt loadings for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 16898-16904.	5.2	21
197	Hierarchical NiO nanobelt film array as an anode for lithium-ion batteries with enhanced electrochemical performance. RSC Advances, 2018, 8, 26589-26595.	1.7	21
198	Electrocatalytic reduction of nitrogen on FeAg/Si for ammonia synthesis: A simple strategy for continuous regulation of faradaic efficiency by controlling H+ ions transfer rate. Applied Catalysis B: Environmental, 2021, 283, 119606.	10.8	21

#	Article	IF	CITATIONS
199	Si doped highly crystalline mesoporous In2O3 nanowires: synthesis, characterization and ultra-high response to NOx at room temperature. RSC Advances, 2015, 5, 15515-15523.	1.7	20
200	Performance improvement of air electrode for Li/air batteries by hydrophobicity adjustment. Journal of Materials Chemistry A, 2015, 3, 11874-11879.	5.2	20
201	Cu ₂ Sâ€Cu ₃ P Nanowire Arrays Selfâ€Supported on Copper Foam as Boosting Electrocatalysts for Hydrogen Evolution. Energy Technology, 2019, 7, 1800993.	1.8	20
202	Pd supported on 2–4nm MoC particles with reduced particle size, synergistic effect and high stability for ethanol oxidation. Electrochimica Acta, 2013, 108, 644-650.	2.6	19
203	Synthesis of the nitrogen-doped carbon nanotube (NCNT) bouquets and their electrochemical properties. Electrochemistry Communications, 2013, 35, 80-83.	2.3	19
204	Pt Ni alloy hyperbranched nanostructures with enhanced catalytic performance towards oxygen reduction reaction. International Journal of Hydrogen Energy, 2018, 43, 18436-18443.	3.8	19
205	Trimetallic Hollow Pt–Ni–Co Nanodendrites as Efficient Anodic Electrocatalysts. ACS Applied Energy Materials, 2019, 2, 961-965.	2.5	19
206	Ultrathin PtCo nanorod assemblies with self-optimized surface for oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2020, 870, 114194.	1.9	19
207	Membrane and electrode engineering of high-performance lithium-sulfur batteries modified by stereotaxically-constructed graphene. Journal of Alloys and Compounds, 2020, 834, 155096.	2.8	19
208	Dynamic conducting effect of WO3/PFSA membranes on the performance of proton exchange membrane fuel cells. Journal of Power Sources, 2008, 177, 56-60.	4.0	18
209	Facile One-Pot Synthesis of a PtRh Alloy Decorated on Ag Nanocubes as a Trimetallic Core–Shell Catalyst for Boosting Methanol Oxidation Reaction. ACS Applied Energy Materials, 2021, 4, 1085-1092.	2.5	18
210	Chelate resin self-assembled quaternary Co–N–P–C catalyst for oxygen reduction reaction. RSC Advances, 2013, 3, 14686.	1.7	17
211	A resin-based methodology to synthesize N-doped graphene-like metal-free catalyst for oxygen reduction. Electrochimica Acta, 2014, 142, 182-186.	2.6	17
212	Facial synthesis of porous hematite supported Pt catalyst and its photo enhanced electrocatalytic ethanol oxidation performance. Electrochimica Acta, 2015, 168, 104-110.	2.6	17
213	Structurally confined ultrafine NiO nanoparticles on graphene as a highly efficient and durable electrode material for supercapacitors. RSC Advances, 2016, 6, 51356-51366.	1.7	17
214	Atomic Platinum Skin under Synergy of Cobalt for Enhanced Methanol Oxidation Electrocatalysis. ACS Applied Materials & Interfaces, 2018, 10, 43716-43722.	4.0	17
215	One-pot preparation of Ni3S2@3-D graphene free-standing electrode by simple Q-CVD method for efficient oxygen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 30806-30819.	3.8	17
216	High performance lithium-sulfur batteries based on CoP nanoparticle-embedded nitrogen-doped carbon nanotube hollow polyhedra. Journal of Electroanalytical Chemistry, 2021, 885, 114996.	1.9	17

#	Article	IF	CITATIONS
217	PtRh alloys on hybrid TiO2 – Carbon support as high efficiency catalyst for ethanol oxidation. International Journal of Hydrogen Energy, 2017, 42, 24689-24696.	3.8	17
218	Biomimetic synthesis of silica hollow spheres using poly (I-lysine) and mechanism research. RSC Advances, 2012, 2, 3288.	1.7	16
219	Small size Mo ₂ C nanocrystal coupled with reduced graphene oxide enhance the electrochemical activity of palladium nanoparticles towards methanol oxidation reaction. Catalysis Science and Technology, 2016, 6, 7316-7322.	2.1	16
220	Tantalum Carbide Doped by Fluorine as Non-precious Metal Anodic Electrocatalyst Superior to Pt/C for Glycerol-Oxidation. Electrochimica Acta, 2017, 227, 267-274.	2.6	16
221	Boosting the volumetric energy of supercapacitors using polytetrafluoroethylene pyrolysis gas. Journal of Power Sources, 2019, 414, 76-85.	4.0	16
222	CO tolerance and durability study of PtMe(MeÂ=ÂIr or Pd) electrocatalysts for H2-PEMFC application. International Journal of Hydrogen Energy, 2021, 46, 13865-13877.	3.8	16
223	Using silkworm excrement and spent lead paste to prepare additives for improving the cycle life of lead-acid batteries. Journal of Energy Storage, 2021, 41, 102785.	3.9	16
224	Ultrasmall molybdenum carbide nanocrystals coupled with reduced graphene oxide supported Pt nanoparticles as enhanced synergistic catalyst for methanol oxidation reaction. Electrochimica Acta, 2016, 216, 295-303.	2.6	15
225	A flexible and conductive MXene-coated fabric integrated with <i>in situ</i> sulfur loaded MXene nanosheets for long-life rechargeable Li–S batteries. Nanoscale, 2021, 13, 2963-2971.	2.8	15
226	High-capacity and high-rate Ni-Fe batteries based on mesostructured quaternary carbon/Fe/FeO/Fe3O4 hybrid material. IScience, 2021, 24, 102547.	1.9	15
227	Unravelling the promoting effect of the ultrathin TaC/RGO nanosheet hybrid for enhanced catalytic activity of Pd nanoparticles. Catalysis Science and Technology, 2016, 6, 7086-7093.	2.1	14
228	A Facile Method to Synthesize Pt–Ni Octahedral Nanoparticles with Porous and Open Structure Features for Enhanced Oxygen Reduction Catalysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 8109-8116.	3.2	14
229	N, S, P co-doped graphene-like carbon nanosheets developed via in situ engineering strategy of carbon pz-orbitals for highly efficient oxygen redox reaction. FlatChem, 2021, 27, 100250.	2.8	14
230	The Effects of Pore Size on Electrical Performance in Lithium-Thionyl Chloride Batteries. Frontiers in Materials, 2019, 6, .	1.2	13
231	Ni-MoO2 nanoparticles heterojunction loaded on stereotaxically-constructed graphene for high-efficiency overall water splitting. Journal of Electroanalytical Chemistry, 2021, 897, 115555.	1.9	13
232	Heterogeneous NiFeCoP/NF Nanorods as a Bifunctional Electrocatalyst for Efficient Water Electrolysis. ChemCatChem, 2021, 13, 4602-4609.	1.8	13
233	A bifunctional interlayer fabricated by FeS2-embedded N-doped carbon nanocages with efficient polysulfide trapping-catalyzing capability for robust Li-S batteries. Chemical Engineering Journal, 2022, 447, 137433.	6.6	13
234	Manganese oxide(â¢)/carbon hybrids with interesting morphologies as improved active materials for supercapacitors. International Journal of Hydrogen Energy, 2019, 44, 13623-13631.	3.8	12

#	Article	IF	CITATIONS
235	Hierarchically Ordered Nanochannel Array Membrane Reactor with Three-Dimensional Electrocatalytic Interfaces for Electrohydrogenation of CO ₂ to Alcohol. ACS Energy Letters, 2018, 3, 2649-2655.	8.8	11
236	Ultrathin Co3O4–Pt core-shell nanoparticles coupled with three-dimensional graphene for oxygen reduction reaction. International Journal of Hydrogen Energy, 2021, 46, 10303-10311.	3.8	11
237	Advanced Aqueous Zincâ€lon Batteries Enabled by 3D Ternary MnO/Reduced Graphene Oxide/Multiwall Carbon Nanotube Hybrids. Energy Technology, 2021, 9, 2100022.	1.8	11
238	Nitrogen and phosphorous co-doped carbon nanotubes embedded via active Ni2P nanoparticles as an advanced in-situ generated electrocatalyst for water oxidation. Journal of Electroanalytical Chemistry, 2022, 920, 116619.	1.9	11
239	Ce ₂ O ₂ S anchored on graphitized carbon with tunable architectures as a new promising anode for Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 10026-10030.	5.2	10
240	Porous nanosheets of Cu ₃ P@N,P co-doped carbon hosted on copper foam as an efficient and ultrastable pH-universal hydrogen evolution electrocatalyst. Sustainable Energy and Fuels, 2021, 5, 2451-2457.	2.5	10
241	A facile strategy synthesized PtRhNi truncated triangle nanoflakes with PtRh-rich surface as highly active and stable bifunctional catalysts for direct methanol fuel cells. Journal of Colloid and Interface Science, 2021, 604, 894-902.	5.0	10
242	A novel in-situ strategy develops for Mo2C nanoparticles incorporated on N, P co-doped stereotaxically carbon as efficient electrocatalyst for overall water splitting. International Journal of Hydrogen Energy, 2022, 47, 15969-15981.	3.8	10
243	A brief consideration about the structural evolution of perfluorosulfonic-acid ionomer membranes. International Journal of Hydrogen Energy, 2012, 37, 4657-4664.	3.8	9
244	Nitrogen and Phosphate Coâ€doped Graphene as Efficient Bifunctional Electrocatalysts by Precursor Modulation Strategy for Oxygen Reduction and Evolution Reactions. ChemElectroChem, 2021, 8, 3262-3272.	1.7	9
245	Efficient carbon dioxide electroreduction over rationally designed heterogeneous Ag2S-Au nanocomposites. Journal of Colloid and Interface Science, 2022, 623, 1172-1180.	5.0	9
246	Robust, Conductive, and High Loading Fiber-Shaped Electrodes Fabricated by 3D Active Coating for Flexible Energy Storage Devices. Nano Letters, 2022, 22, 5795-5802.	4.5	9
247	Atomic Scale Mechanisms of Multimode Oxide Growth on Nickel–Chromium Alloy: Direct <i>In Situ</i> Observation of the Initial Oxide Nucleation and Growth. ACS Applied Materials & Interfaces, 2021, 13, 1903-1913.	4.0	8
248	Bottom-up synthesis of few-layered graphene powders and their applications as efficient lubricating and electromagnetic shielding additives. FlatChem, 2022, 33, 100375.	2.8	8
249	Spontaneous formation of platinum particles on electrodeposited palladium. Electrochemistry Communications, 2007, 9, 1563-1566.	2.3	7
250	Cation-adsorption-assisted Ni3S2/carbon nanowalls composites with three-dimensional interconnected porous structures for high-performance lithium-ion battery anodes. Journal of Materials Science, 2020, 55, 17081-17093.	1.7	7
251	Ultrahighly nitrogen-doped hollow carbon spheres with hierarchical pores for highly reversible lithium–sulfur batteries. Sustainable Energy and Fuels, 2022, 6, 320-328.	2.5	7
252	Lowâ€temperature Synthesis of Peonyâ€like Spinel Li ₄ Ti ₅ O ₁₂ as a Highâ€performance Anode Material for Lithium Ion Batteries. Chinese Journal of Chemistry, 2011, 29, 1824-1828.	2.6	6

#	Article	IF	CITATIONS
253	Exterior and small carbide particle promoted platinum electrocatalyst for efficient methanol oxidation. RSC Advances, 2016, 6, 66665-66671.	1.7	6
254	K0.4TaO2.4F0.6 Nanocubes as Highly Efficient Noble Metal-Free Electrocatalysts for Hydrogen Evolution Reaction in Acidic Media. Electrochimica Acta, 2017, 245, 193-200.	2.6	6
255	Self-assembled and well separated B andÂN co-doped hierarchical carbon structures as high-capacity, ultra-stable, LIB anode materials. Sustainable Energy and Fuels, 2019, 3, 478-487.	2.5	6
256	Electricity generation from ionic solution flowing through packed three-dimensional graphene powders. Nanotechnology, 2021, 32, 355401.	1.3	6
257	Highly stable cathodes for proton exchange membrane fuel cells: Novel carbon supported Au@PtNiAu concave octahedral core-shell nanocatalyst. Journal of Colloid and Interface Science, 2022, 626, 1040-1050.	5.0	6
258	Supported 3-D Pt nanostructures: the straightforward synthesis and enhanced electrochemical performance for methanol oxidation in an acidic medium. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	5
259	Selfâ€Assembled 3D Hierarchical Porous Hybrid as Platinumâ€Like Bifunctional Nonprecious Metal Catalyst toward Oxygen Reduction Reaction and Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2018, 5, 1801296.	1.9	5
260	Black potassium titanate nanobelts: Ultrafast and durable aqueous redox electrolyte energy storage. Journal of Power Sources, 2021, 483, 229140.	4.0	5
261	Hollow Graphene Fibers with Archimedean-Type Spirals for Flexible and Wearable Electronics. ACS Applied Nano Materials, 2021, 4, 6985-6994.	2.4	5
262	High-performance yttrium-iron alloy doped Pt-free catalysts on graphene for hydrogen evolution. RSC Advances, 2018, 8, 40866-40872.	1.7	1
263	Largeâ€scale Synthesis of Porous Pt Nanospheres /Threeâ€dimensional Graphene Hybrid Materials as a Highly Active and Stable Electrocatalyst for Oxygen Reduction Reaction. ChemistrySelect, 2021, 6, 2080-2084.	0.7	1
264	Catalyst Materials for Oxygen Reduction Reaction. , 2021, , 85-182.		0
265	Preparation of the Catalysts. , 2021, , 183-214.		0