Nobuyuki Mase

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/595538/publications.pdf

Version: 2024-02-01

97 papers

4,077 citations

218677 26 h-index 62 g-index

97 all docs

97 docs citations

97 times ranked 3651 citing authors

#	Article	IF	CITATIONS
1	Continuous flow photooxidation of alkyl benzenes using fine bubbles for mass transfer enhancement. Tetrahedron Letters, 2022, 90, 153613.	1.4	9
2	Electrodeless hydrogen production from seawater using femtosecond laser pulses. RSC Advances, 2022, 12, 9304-9309.	3.6	1
3	Synthesis and Structural Characterization of \hat{l}^2 -Turn Mimics Containing (<i>Z</i>)-Chloroalkene Dipeptide Isosteres. Journal of Organic Chemistry, 2022, 87, 2167-2177.	3.2	2
4	Synthesis and Characterization of Cyclodextrin-Based Polyhemiaminal Composites with Enhanced Thermal Stability. Polymers, 2022, 14, 1562.	4.5	2
5	Design, synthesis, and bio-evaluation of novel triterpenoid derivatives as anti-HIV-1 compounds. Bioorganic and Medicinal Chemistry Letters, 2022, 69, 128768.	2.2	1
6	Late-Stage Solubilization of Poorly Soluble Peptides Using Hydrazide Chemistry. Organic Letters, 2021, 23, 1653-1658.	4.6	4
7	\hat{l}^2 , \hat{l}^3 -trans-selective \hat{l}^3 -butyrolactone formation via homoenolate cross-annulation of enals and aldehydes catalyzed by sterically hindered N-heterocyclic carbene. Tetrahedron, 2021, 91, 132191.	1.9	2
8	Stereoselective synthesis of highly functionalized ($\langle i \rangle Z \langle i \rangle$)-chloroalkene dipeptide isosteres containing an $\hat{l}\pm,\hat{l}\pm$ -disubstituted amino acid. Chemical Communications, 2021, 57, 6915-6918.	4.1	3
9	Fine-Bubble–Slug-Flow Hydrogenation of Multiple Bonds and Phenols. Synlett, 2020, 31, 1919-1924.	1.8	6
10	Pendant Alkoxy Groups on Nâ€Aryl Substitutions Drive the Efficiency of Imidazolylidene Catalysts for Homoenolate Annulation from Enal and Aldehyde. Angewandte Chemie - International Edition, 2020, 59, 19031-19036.	13.8	1
11	Highly effective volatile organic compound dissolving strategy based on mist atomization for odorant biosensors. Analytica Chimica Acta, 2020, 1139, 178-188.	5.4	7
12	Pendant Alkoxy Groups on Nâ€Aryl Substitutions Drive the Efficiency of Imidazolylidene Catalysts for Homoenolate Annulation from Enal and Aldehyde. Angewandte Chemie, 2020, 132, 19193-19198.	2.0	0
13	Stereoselective synthesis of Gly-Gly-type ($\langle i \rangle E \langle i \rangle$)-methylalkene and ($\langle i \rangle Z \langle i \rangle$)-chloroalkene dipeptide isosteres and their application to 14-mer RGG peptidomimetics. RSC Advances, 2020, 10, 29373-29377.	3.6	4
14	Rapid Optimization of Reaction Conditions Based on Comprehensive Reaction Analysis Using a Continuous Flow Microwave Reactor. Chemical Record, 2019, 19, 77-84.	5 . 8	24
15	Epimerization-suppressed organocatalytic synthesis of poly-l-lactide in supercritical carbon dioxide under plasticizing conditions. Tetrahedron Letters, 2019, 60, 150987.	1.4	3
16	Chemoselective Umpolung of Enals for Asymmetric Homoenolate Cross-Annulation of Enals and Aldehydes Catalyzed by N-Heterocyclic Carbene. Organic Letters, 2019, 21, 9119-9123.	4.6	4
17	Oxotitanium(IV) complexes of some bisâ€unsymmetric Schiff bases: Synthesis, structural elucidation and biomedical applications. Applied Organometallic Chemistry, 2019, 33, e4876.	3.5	18
18	Estimation of Outlet Temperature of a Flow Reactor Heated by Microwave Irradiation. Chemical Record, 2019, 19, 140-145.	5 . 8	7

#	Article	IF	CITATIONS
19	Spectral and computational chemistry studies for the optimization of geometry of dioxomolybdenum(VI) complexes of some unsymmetrical Schiff bases as antimicrobial agent. Journal of Coordination Chemistry, 2018, 71, 3874-3892.	2.2	11
20	Organocatalytic ring-opening polymerization of l-lactide in supercritical carbon dioxide under plasticizing conditions. Tetrahedron Letters, 2018, 59, 4392-4396.	1.4	4
21	7-Hydroxy-N-Methylquinolinium Chromophore: A Photolabile Protecting Group for Blue-Light Uncaging. Organic Letters, 2018, 20, 4178-4182.	4.6	12
22	Scalable Microwave-Assisted Johnson–Claisen Rearrangement with a Continuous Flow Microwave System. Organic Process Research and Development, 2018, 22, 1029-1033.	2.7	27
23	Organocatalytic Stereoselective Cyclic Polylactide Synthesis in Supercritical Carbon Dioxide under Plasticizing Conditions. Polymers, 2018, 10, 713.	4.5	16
24	Direct synthesis of N-terminal thiazolidine-containing peptide thioesters from peptide hydrazides. Chemical Communications, 2018, 54, 9127-9130.	4.1	16
25	Tuning the Catalyst Reactivity of Imidazolylidene Catalysts through Substituent Effects on the $\langle i \rangle N \langle j \rangle$ -Aryl Groups. Organic Letters, 2017, 19, 2750-2753.	4.6	17
26	Selective improvement of peptides imaging on tissue by supercritical fluid wash of lipids for matrix-assisted laser desorption/ionization mass spectrometry. Analytical and Bioanalytical Chemistry, 2017, 409, 1475-1480.	3.7	8
27	The role of chemisorption for push-pull chromophores on SiO2 surfaces in non-electrically poling host-guest NLO polymers. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 340, 35-45.	3.9	3
28	Fine-Bubble-Based Strategy for the Palladium-Catalyzed Hydrogenation of Nitro Groups: Measurement of Ultrafine Bubbles in Organic Solvents. Synlett, 2017, 28, 2184-2188.	1.8	17
29	Curcumin-Loaded PLA Nanoparticles: Formulation and Physical Evaluation. Scientia Pharmaceutica, 2016, 84, 191-202.	2.0	52
30	The Effect of Iron Oxide on the Mechanical and Ageing Properties of Y-TZP Ceramic. Key Engineering Materials, 2016, 701, 225-229.	0.4	11
31	Synthesis of a self-assembling gold nanoparticle-supported organocatalyst for enamine-based asymmetric aldol reactions. Tetrahedron, 2016, 72, 1984-1990.	1.9	10
32	Characteristic Fluctuations in Glycosidically Bound Volatiles during Tea Processing and Identification of Their Unstable Derivatives. Journal of Agricultural and Food Chemistry, 2016, 64, 1151-1157.	5.2	48
33	Determination of Volatile Compounds in Four Commercial Samples of Japanese Green Algae Using Solid Phase Microextraction Gas Chromatography Mass Spectrometry. Scientific World Journal, The, 2014, 2014, 1-8.	2.1	49
34	Fluorogenic aldehydes bearing arylethynyl groups: turn-on aldol reaction sensors for evaluation of organocatalysis in DMSO. Tetrahedron Letters, 2014, 55, 1946-1948.	1.4	6
35	Characterization of flower-inducing compound in Lemna paucicostata exposed to drought stress. Tetrahedron, 2014, 70, 4969-4976.	1.9	7
36	Second-order nonlinear optical susceptibilities in nonelectrically poled guest–host polymers with tricyanofuran chromophores. Japanese Journal of Applied Physics, 2014, 53, 01AD09.	1.5	3

#	Article	IF	CITATIONS
37	Synthesis and Characterization of Quantum Dot Nanoparticles Bound to the Plant Volatile Precursor of Hydroxy-apo-10′-carotenal. Journal of Organic Chemistry, 2014, 79, 6808-6815.	3.2	8
38	Characterisation of odorant compounds and their biochemical formation in green tea with a low temperature storage process. Food Chemistry, 2014, 148, 388-395.	8.2	70
39	Second-Order Nonlinear Optical Susceptibilities of Nonelectrically Poled DR1–PMMA Guest–Host Polymers. Journal of Physical Chemistry B, 2013, 117, 14857-14864.	2.6	11
40	Organocatalytic Knoevenagel Condensations by Means of Carbamic Acid Ammonium Salts. Organic Letters, 2013, 15, 1854-1857.	4.6	70
41	Fluorogenic probes for chemical transformations: 9-anthracene derivatives for monitoring reaction progress by an increase in fluorescence. Tetrahedron Letters, 2013, 54, 4306-4308.	1.4	10
42	Micro and Nanobubble Based Strategy for Gas-Liquid-Solid Multiphase Reactions: Palladium-Catalysed Hydrogenation of Carbon-Carbon Unsaturated Bonds. Synlett, 2013, 24, 2225-2228.	1.8	9
43	Self-organizing second-order nonlinear susceptibility in NLO-chromophore-doped amorphous ferroelectric poly-(cyano phenylene sulfide) polymers [Invited]. Optical Materials Express, 2012, 2, 2.	3.0	8
44	Aerobic copper/TEMPO-catalyzed oxidation of primary alcohols to aldehydes using a microbubble strategy to increase gas concentration in liquid phase reactions. Chemical Communications, 2011, 47, 2086.	4.1	60
45	Nonelectrical Poling Procedure for ordering NLO dyes in novel host amorphous ferroelectric polymer. , 2011, , .		0
46	Second-order NLO of non-electrically-poled choromophore-doped amorphous ferroelectric polymers. , 2011, , .		0
47	Linear and nonlinear optical properties of disperse red dyes in poly-(cyano phenylene sulfide). Chemical Physics Letters, 2010, 501, 39-43.	2.6	4
48	Organocatalytic Enantioselective Michael Additions of Malonates to 2-Cyclopentenone. Synlett, 2010, 2010, 2340-2344.	1.8	25
49	Protection-, Salt-, and Metal-Free Syntheses of [n]-Shogaols by Use of Dimethylammonium Dimethyl Carbamate (DIMCARB) without Protecting Groups. Synlett, 2010, 2010, 93-96.	1.8	9
50	In water, on water, and by water: mimicking nature's aldolases with organocatalysis and water. Organic and Biomolecular Chemistry, 2010, 8, 4043.	2.8	189
51	Properties of new sulfur-free gas odorant for fuel gas. Journal of Japan Association on Odor Environment, 2009, 40, 248-255.	0.0	3
52	Effect of Long Chain Fatty Acids on Organocatalytic Aqueous Direct Aldol Reactions. Advanced Synthesis and Catalysis, 2009, 351, 2791-2796.	4.3	54
53	Organocatalytic \hat{l}_{\pm} -hydroxymethylation of cyclopentanone with aqueous formaldehyde: Easy access to chiral \hat{l} -lactones. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3955-3958.	2.2	27
54	Chemoenzymatic total synthesis and determination of the absolute configuration of (S)-nebracetam. Tetrahedron: Asymmetry, 2008, 19, 2115-2118.	1.8	9

#	Article	IF	CITATIONS
55	A practical synthesis of (E)-2-cyclopentadecen-1-one: an important precursor of macrocyclic muscone. Tetrahedron Letters, 2008, 49, 548-551.	1.4	9
56	Cyclization of N,N-diethylgeranylamine N-oxide in one-pot operation: preparation of cyclic terpenoid-aroma chemicals. Tetrahedron Letters, 2008, 49, 6016-6018.	1.4	5
57	Total synthesis of (\hat{a}°) -2-epi-lentiginosine by use of chiral 5-hydroxy-1,5-dihydropyrrol-2-one as a building block. Tetrahedron Letters, 2007, 48, 8956-8959.	1.4	29
58	Organocatalytic Direct Michael Reaction of Ketones and Aldehydes with \hat{l}^2 -Nitrostyrene in Brine. Journal of the American Chemical Society, 2006, 128, 4966-4967.	13.7	438
59	Organocatalytic Direct Asymmetric Aldol Reactions in Water. Journal of the American Chemical Society, 2006, 128, 734-735.	13.7	642
60	Lipase-catalyzed kinetic resolution of thiotetronic acid derivatives bearing a chiral quaternary carbon: total synthesis of (R)-thiolactomycin and its O-analogue. Tetrahedron Letters, 2006, 47, 7163-7166.	1.4	15
61	Lipase-catalyzed kinetic resolution of tetronic acid derivatives bearing a chiral quaternary carbon: total synthesis of (S)-(â^')-vertinolide. Tetrahedron: Asymmetry, 2006, 17, 2195-2198.	1.8	11
62	First Asymmetric Synthesis of New Diarylheptanoids, Renealtin A and B, with a Tetrahydrofuran Ring. Synlett, 2006, 2006, 2031-2034.	1.8	0
63	A simplified synthesis of (R)-(\hat{a} ')-muscone using a ring-opening reaction of (R)-(+)- \hat{l} 2-methyl- \hat{l} 2-propiolactone. Tetrahedron: Asymmetry, 2005, 16, 3176-3182.	1.8	19
64	Enantioselective reactions of tert-butyl glycinate–benzophenone Schiff base catalyzed by chiral phase-transfer catalyst in aqueous media without any organic solvent. Tetrahedron Letters, 2005, 46, 3213-3216.	1.4	11
65	Practical optical resolution of dl-muscone using tartaric acid derivatives as a chiral auxiliary. Tetrahedron Letters, 2005, 46, 3457-3460.	1.4	15
66	Highly regioselective lipase-catalyzed acetylation and hydrolysis of acyclic α,α′-alkenediols and their diacetates. Tetrahedron Letters, 2005, 46, 6293-6295.	1.4	16
67	Direct Asymmetric α-Fluorination of Aldehydes. Angewandte Chemie - International Edition, 2005, 44, 3706-3710.	13.8	315
68	Convenient Synthesis of Pulchella-lactam, a CD45 Protein Tyrosine Phosphatase Inhibitor from the Marine Fungus Corollospora pulchella, and Its Related Compounds. Heterocycles, 2004, 63, 1013.	0.7	15
69	Synthesis ofÎ ² -Hydroxyaldehydes with Stereogenic Quaternary Carbon Centers by Direct Organocatalytic Asymmetric Aldol Reactions. Angewandte Chemie - International Edition, 2004, 43, 2420-2423.	13.8	240
70	Rapid analysis of solvent effects on enamine formation by fluorescence: how might enzymes facilitate enamine chemistry with primary amines?. Tetrahedron Letters, 2004, 45, 325-328.	1.4	74
71	Design and Use of Fluorogenic Aldehydes for Monitoring the Progress of Aldehyde Transformations. Journal of the American Chemical Society, 2004, 126, 3692-3693.	13.7	49
72	Direct Asymmetric Organocatalytic Michael Reactions of $\hat{l}\pm,\hat{l}\pm$ -Disubstituted Aldehydes with \hat{l}^2 -Nitrostyrenes for the Synthesis of Quaternary Carbon-Containing Products. Organic Letters, 2004, 6, 2527-2530.	4.6	317

#	Article	IF	Citations
73	Determination of cysteine concentration by fluorescence increase: reaction of cysteine with a fluorogenic aldehyde. Chemical Communications, 2004, , 1762.	4.1	201
74	Rapid Fluorescent Screening for Bifunctional Amineâ^'Acid Catalysts:  Efficient Syntheses of Quaternary Carbon-Containing Aldols under Organocatalysis. Organic Letters, 2003, 5, 4369-4372.	4.6	112
75	Lewis acid-promoted tandem desulfurization and hydroxylation of \hat{l}^3 -phenylthio-substituted lactams: novel synthetic strategy of isoindolobenzazepine alkaloid, chilenine. Tetrahedron Letters, 2003, 44, 9057-9060.	1.4	20
76	Highly regioselective lipase-catalyzed acetylation and hydrolysis of acyclic $\hat{l}\pm, \hat{l}\%$ -terpenediols and their diacetates. Tetrahedron Letters, 2003, 44, 3267-3269.	1.4	18
77	Enantioselective alkylation using a new C3 symmetric amine-based chiral phase-transfer catalyst. Tetrahedron Letters, 2003, 44, 4073-4075.	1.4	49
78	Novel strategic lipase-catalyzed asymmetrization of 1,3-propanediacetate in supercritical carbon dioxide. Tetrahedron Letters, 2003, 44, 5175-5178.	1.4	34
79	Chemoenzymatic synthesis of (E)-3,7-dimethyl-2-octene-1,8-diol isolated from the hairpencils of male danaus chrysippus (African monarch). Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1967-1969.	2.2	12
80	Diastereoselective radical allylation and hydrogenation of \hat{l}_{\pm} -(arylsulfinyl)alkyl radicals induced by chelation control. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 2134-2136.	1.3	9
81	Extremely simple and practical synthesis of $(\hat{A}\pm)$ -vertinolide via the Michael addition. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 500-502.	1.3	8
82	Preparation of chiral 4-benzyloxymethyldihydrofuran-2-one using lipase-catalyzed kinetic resolution: synthesis of (â^')-Virginiae Butanolide C (VB C). Bioorganic and Medicinal Chemistry Letters, 2002, 12, 2295-2297.	2.2	12
83	Regioselective reduction of maleimide and citraconimide derivatives: general preparation of 5-hydroxy-1,5-dihydropyrrol-2-one. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 707-709.	1.3	21
84	Enantioselective allylation of the \hat{l}_{\pm} -sulfonyl radical controlled by coordination of a chiral Lewis acid to an enantiotopic sulfonyl oxygen. Tetrahedron Letters, 2001, 42, 2981-2984.	1.4	53
85	Convenient route to both enantiomers of chiral 5-hydroxypyrrolidin-2-one and 5-hydroxy-1,5-dihydropyrrol-2-one: reverse enantioselectivity in lipase-catalyzed kinetic resolution. Tetrahedron Letters, 2000, 41, 9859-9863.	1.4	14
86	Reverse enantioselectivity in the lipase-catalyzed desymmetrization of prochiral 2-carbamoylmethyl-1,3-propanediol derivatives. Tetrahedron: Asymmetry, 2000, 11, 4825-4829.	1.8	17
87	Diastereoselective Radical Hydrogenation of α-(1-Hydroxyalkyl)vinyl Sulfoxides and Sulfones Controlled by Intramolecular Hydrogen Bonding. Journal of Organic Chemistry, 2000, 65, 7083-7090.	3.2	21
88	Discrimination of diastereotopic sulfonyl oxygens by intramolecular hydrogen bonding: Stereoselective hydrogenation of α-sulfonyl radicals. Tetrahedron Letters, 1999, 40, 2797-2800.	1.4	27
89	An improved and efficient procedure for the preparation of chiral sulfinates from sulfonyl chloride using triphenylphosphine. Tetrahedron: Asymmetry, 1999, 10, 737-745.	1.8	32
90	First synthesis of (R)-(â^')-5-hydroxy-3-methyl-3-pyrrolin-2-one (jatropham) by lipase-catalyzed kinetic resolution. Tetrahedron: Asymmetry, 1999, 10, 4469-4471.	1.8	22

#	Article	IF	CITATIONS
91	Stereoselective hydrogenation of \hat{l}_{\pm} -sulfinyl radical generated from alkyl radical addition to \hat{l}_{\pm} -(1-hydroxyethyl)vinyl sulfoxide. Tetrahedron Letters, 1998, 39, 5553-5556.	1.4	29
92	Radical \hat{l}^2 -addition to acyclic \hat{l}_{\pm} -(arylsulfinyl) enones: Pummerer-type rearrangement. Journal of the Chemical Society Perkin Transactions 1, 1998, , 1613-1618.	0.9	16
93	Diastereomer-Differentiating Radical \hat{l}^2 -Addition to 4- or 5-Methyl-2-[(2,4,6-triisopropylphenyl)sulfinyl]-2-cyclopentenones. Journal of Organic Chemistry, 1998, 63, 3899-3904.	3.2	34
94	Photo-Induced Intermolecular Radical \hat{l}^2 -Addition to Chiral \hat{l}_{\pm} -(Arylsulfinyl) Enones. Bulletin of the Chemical Society of Japan, 1998, 71, 2957-2965.	3.2	27
95	Highly Diastereoselective Intermolecular β-Addition of Alkyl Radicals to Chiral 2-(Arylsulfinyl)-2-cycloalkenones. Journal of Organic Chemistry, 1997, 62, 7794-7800.	3.2	59
96	Diastereofacial control in the radical addition to chiral \hat{l}_{\pm} -sulfinyl enones. Pure and Applied Chemistry, 1996, 68, 711-714.	1.9	29
97	Comparative study of inclusion complex formation between \hat{l}^2 -cyclodextrin (host) and aromatic diamines (guests) by mixing in hot water, co-precipitation, and solid-state grinding methods. Journal of Carbohydrate Chemistry, 0, , 1-24.	1.1	0