Minji Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/595520/publications.pdf

Version: 2024-02-01

50 2,020 24
papers citations h-in

24 44
h-index g-index

52 52 all docs citations

52 times ranked 2907 citing authors

#	Article	IF	CITATIONS
1	Preparation of highly adhesive urethane–acrylate-based gel-polymer electrolytes and their optimization in flexible electrochromic devices. Journal of Electroanalytical Chemistry, 2022, 917, 116423.	3.8	3
2	Integration of multiple electronic components on a microfibre towards an emerging electronic textile platform. Nature Communications, $2022,13,.$	12.8	27
3	Recent Advances in Fiber-Shaped Electronic Devices for Wearable Applications. Applied Sciences (Switzerland), 2021, 11, 6131.	2.5	21
4	Light-sensitive charge storage medium with spironaphthooxazine molecule-polymer blends for dual-functional organic phototransistor memory. Organic Electronics, 2020, 78, 105554.	2.6	8
5	One-dimensional organic artificial multi-synapses enabling electronic textile neural network for wearable neuromorphic applications. Science Advances, 2020, 6, .	10.3	102
6	Molecular engineering of a porphyrin-based hierarchical superstructure: planarity control of a discotic metallomesogen for high thermal conductivity. Materials Horizons, 2020, 7, 2635-2642.	12.2	13
7	Highâ€Performance Flexible Organic Nonvolatile Memories with Outstanding Stability Using Nickel Oxide Nanofloating Gate and Polymer Electret. Advanced Electronic Materials, 2020, 6, 2000189.	5.1	12
8	Unsymmetrical Small Molecules for Broad-Band Photoresponse and Efficient Charge Transport in Organic Phototransistors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 25066-25074.	8.0	16
9	Two-in-One Device with Versatile Compatible Electrical Switching or Data Storage Functions Controlled by the Ferroelectricity of P(VDF-TrFE) via Photocrosslinking. ACS Applied Materials & Samp; Interfaces, 2019, 11, 25358-25368.	8.0	7
10	Low-Voltage Organic Transistor Memory Fiber with a Nanograined Organic Ferroelectric Film. ACS Applied Materials & Drawn; Interfaces, 2019, 11, 22575-22582.	8.0	33
11	Hierarchical Hybrid Nanostructures Constructed by Fullerene and Molecular Tweezer. ACS Nano, 2019, 13, 6101-6112.	14.6	14
12	Diseleno[3,2â€ <i>b</i> :2′,3′â€ <i>d</i>]selenophene ontaining Highâ€Mobility Conjugated Polymer for Fieldâ€Effect Transistors. Advanced Science, 2019, 6, 1900245.	Organic 1 1. 2	32
13	Ultrathin Conformable Organic Artificial Synapse for Wearable Intelligent Device Applications. ACS Applied Materials & Device Applications. ACS Applied Materials & Device Applications. ACS	8.0	106
14	Tuning non-volatile memory characteristics via molecular doping of polymer semiconductors based on ambipolar organic field-effect transistors. Organic Electronics, 2018, 58, 12-17.	2.6	25
15	Optimized Activation of Solutionâ€Processed Amorphous Oxide Semiconductors for Flexible Transparent Conductive Electrodes. Advanced Electronic Materials, 2018, 4, 1700386.	5.1	12
16	2D/2D vanadyl phosphate (VP) on reduced graphene oxide as a hole transporting layer for efficient organic solar cells. Organic Electronics, 2018, 59, 92-98.	2.6	13
17	Simultaneous enhancement of charge density and molecular stacking order of polymer semiconductors by viologen dopants for high performance organic field-effect transistors. Journal of Materials Chemistry C, 2018, 6, 5497-5505.	5.5	23
18	Hybrid dielectrics composed of Al2O3 and phosphonic acid self-assembled monolayers for performance improvement in low voltage organic field effect transistors. Nano Convergence, 2018, 5, 20.	12.1	22

#	Article	IF	CITATIONS
19	Effect of Semiâ€Fluorinated Alkyl Side Chains on Conjugated Polymers with Planar Backbone in Organic Fieldâ€Effect Transistors. Macromolecular Rapid Communications, 2018, 39, e1800431.	3.9	13
20	Precise Side-Chain Engineering of Thienylenevinylene–Benzotriazole-Based Conjugated Polymers with Coplanar Backbone for Organic Field Effect Transistors and CMOS-like Inverters. ACS Applied Materials & Diterfaces, 2017, 9, 2758-2766.	8.0	39
21	Effect of side chains on phenanthrene based D-A type copolymers for polymer solar cells. Organic Electronics, 2017, 44, 238-246.	2.6	13
22	Structure-property relationship of D-A type copolymers based on thienylenevinylene for organic electronics. Organic Electronics, 2017, 46, 77-87.	2.6	13
23	Ambipolar Small-Molecule:Polymer Blend Semiconductors for Solution-Processable Organic Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 2686-2692.	8.0	40
24	Structure–property relationship of D–A type copolymers based on phenanthrene and naphthalene units for organic electronics. Journal of Materials Chemistry C, 2017, 5, 10332-10342.	5 . 5	4
25	Polymeric P–N Heterointerface for Solutionâ€Processed Integrated Organic Optoelectronic Systems. Advanced Optical Materials, 2017, 5, 1700655.	7.3	16
26	A systematic study on molecular planarity and Dâ \in A conformation in thiazolothiazole- and thienylenevinylene-based copolymers for organic field-effect transistors. Journal of Materials Chemistry C, 2017, 5, 10126-10132.	5 . 5	25
27	A conjugated polymer with high planarity and extended π-electron delocalization via a quinoid structure prepared by short synthetic steps. Polymer Chemistry, 2017, 8, 361-365.	3.9	34
28	Enhanced performance of perovskite solar cells with solution-processed n-doping of the PCBM interlayer. RSC Advances, 2016, 6, 64962-64966.	3.6	6
29	Blending of n-type Semiconducting Polymer and PC ₆₁ BM for an Efficient Electron-Selective Material to Boost the Performance of the Planar Perovskite Solar Cell. ACS Applied Materials & Diterfaces, 2016, 8, 12822-12829.	8.0	30
30	Systematic Study of Widely Applicable Nâ€Doping Strategy for Highâ€Performance Solutionâ€Processed Fieldâ€Effect Transistors. Advanced Functional Materials, 2016, 26, 7886-7894.	14.9	53
31	Favorable Molecular Orientation Enhancement in Semiconducting Polymer Assisted by Conjugated Organic Small Molecules. Advanced Functional Materials, 2016, 26, 8527-8536.	14.9	18
32	Large Enhancement of Carrier Transport in Solutionâ€Processed Fieldâ€Effect Transistors by Fluorinated Dielectric Engineering. Advanced Materials, 2016, 28, 518-526.	21.0	87
33	Exploration of fabrication methods for planar CH3NH3Pbl3 perovskite solar cells. Nano Energy, 2016, 27, 175-184.	16.0	35
34	In-depth considerations for better polyelectrolytes as interfacial materials in polymer solar cells. Nano Energy, 2016, 21, 26-38.	16.0	56
35	Synergistic High Charge-Storage Capacity for Multi-level Flexible Organic Flash Memory. Scientific Reports, 2015, 5, 12299.	3 . 3	50
36	Stable charge storing in two-dimensional MoS ₂ nanoflake floating gates for multilevel organic flash memory. Nanoscale, 2014, 6, 12315-12323.	5 . 6	64

#	Article	IF	Citations
37	An Approach for an Advanced Anode Interfacial Layer with Electron-Blocking Ability to Achieve High-Efficiency Organic Photovoltaics. ACS Applied Materials & Enterfaces, 2014, 6, 19613-19620.	8.0	24
38	Solution-Processed Barium Salts as Charge Injection Layers for High Performance N-Channel Organic Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2014, 6, 9614-9621.	8.0	37
39	Simultaneous Enhancement of Electron Injection and Air Stability in N-Type Organic Field-Effect Transistors by Water-Soluble Polyfluorene Interlayers. ACS Applied Materials & Interfaces, 2014, 6, 8108-8114.	8.0	18
40	Spray-printed organic field-effect transistors and complementary inverters. Journal of Materials Chemistry C, 2013, 1, 1500.	5. 5	40
41	Printed, Flexible, Organic Nanoâ€Floatingâ€Gate Memory: Effects of Metal Nanoparticles and Blocking Dielectrics on Memory Characteristics. Advanced Functional Materials, 2013, 23, 3503-3512.	14.9	200
42	Inkjet-Printing-Based Soft-Etching Technique for High-Speed Polymer Ambipolar Integrated Circuits. ACS Applied Materials & Diterfaces, 2013, 5, 12579-12586.	8.0	12
43	High Performance and Stable N-Channel Organic Field-Effect Transistors by Patterned Solvent-Vapor Annealing. ACS Applied Materials & Samp; Interfaces, 2013, 5, 10745-10752.	8.0	60
44	Organic Electronics: Printed, Flexible, Organic Nanoâ€Floatingâ€Gate Memory: Effects of Metal Nanoparticles and Blocking Dielectrics on Memory Characteristics (Adv. Funct. Mater. 28/2013). Advanced Functional Materials, 2013, 23, 3482-3482.	14.9	4
45	Organic Complementary Circuits: Remarkable Enhancement of Hole Transport in Top-Gated N-Type Polymer Field-Effect Transistors by a High-k Dielectric for Ambipolar Electronic Circuits (Adv. Mater.) Tj ETQq1 1 ().7 811 814	rgBT /Overlo
46	Electron injection enhancement by a Cs-salt interlayer in ambipolar organic field-effect transistors and complementary circuits. Journal of Materials Chemistry, 2012, 22, 16979.	6.7	32
47	Controlled Charge Transport by Polymer Blend Dielectrics in Top-Gate Organic Field-Effect Transistors for Low-Voltage-Operating Complementary Circuits. ACS Applied Materials & Samp; Interfaces, 2012, 4, 6176-6184.	8.0	77
48	Highâ€Performance Topâ€Gated Organic Fieldâ€Effect Transistor Memory using Electrets for Monolithic Printed Flexible NAND Flash Memory. Advanced Functional Materials, 2012, 22, 2915-2926.	14.9	184
49	Remarkable Enhancement of Hole Transport in Topâ€Gated Nâ€Type Polymer Fieldâ€Effect Transistors by a Highâ€k Dielectric for Ambipolar Electronic Circuits. Advanced Materials, 2012, 24, 5433-5439.	21.0	176
50	Improved performance uniformity of inkjet printed n-channel organic field-effect transistors and complementary inverters. Organic Electronics, 2011, 12, 634-640.	2.6	65