
Ling-Bao Xing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5954878/publications.pdf Version: 2024-02-01

LING-BAO XINC

#	Article	IF	CITATIONS
1	Nitrogen, sulfur-codoped graphene sponge as electroactive carbon interlayer for high-energy and -power lithium–sulfur batteries. Journal of Power Sources, 2016, 303, 22-28.	7.8	180
2	TiO2/g-C3N4 photocatalyst for the purification of potassium butyl xanthate in mineral processing wastewater. Journal of Environmental Management, 2021, 297, 113311.	7.8	79
3	Three dimensional nitrogen-doped graphene aerogels functionalized with melamine for multifunctional applications in supercapacitors and adsorption. Journal of Solid State Chemistry, 2015, 230, 224-232.	2.9	64
4	Reversible multistimuli-responsive vesicles formed by an amphiphilic cationic platinum(ii) terpyridyl complex with a ferrocene unit in water. Chemical Communications, 2012, 48, 10886.	4.1	54
5	Organogelators Based on TTF Supramolecular Assemblies: Synthesis, Characterization, and Conductive Property. Langmuir, 2011, 27, 774-781.	3.5	49
6	A facile preparation of three dimensional N, S co-doped graphene hydrogels with thiocarbohydrazide for electrode materials in supercapacitor. Materials Letters, 2015, 147, 97-100.	2.6	49
7	Reversible Sol-to-Gel Transformation of Uracil Gelators: Specific Colorimetric and Fluorimetric Sensor for Fluoride Ions. Langmuir, 2013, 29, 2843-2848.	3.5	48
8	UV-Assisted Photoreduction of Graphene Oxide into Hydrogels: High-Rate Capacitive Performance in Supercapacitor. Journal of Physical Chemistry C, 2014, 118, 25924-25930.	3.1	43
9	Rational design of a highly sensitive and selective "turn-on―fluorescent sensor for PO ₄ ^{3â^`} detection. Dalton Transactions, 2015, 44, 20830-20833.	3.3	35
10	Multistimuli Responsive Micelles Formed by a Tetrathiafulvalene-Functionalized Amphiphile. Langmuir, 2011, 27, 8665-8671.	3.5	32
11	Three dimensional reduced graphene hydrogels with tunable pore sizes using thiourea dioxide for electrode materials in supercapacitors. Electrochimica Acta, 2015, 176, 1288-1295.	5.2	31
12	Carbohydrazide-dependent reductant for preparing nitrogen-doped graphene hydrogels as electrode materials in supercapacitor. Applied Surface Science, 2016, 368, 388-394.	6.1	30
13	Nitrogenâ€Doped Hierarchical Porous Carbon through Oneâ€Step Activation of Bean Curd for Highâ€Performance Supercapacitor Electrode. ChemElectroChem, 2018, 5, 1606-1614.	3.4	30
14	Supramolecular hyperbranched polymers with aggregation-induced emission based on host-enhanced π–π interaction for use as aqueous light-harvesting systems. Dyes and Pigments, 2017, 146, 392-397.	3.7	29
15	Breaking aziridines to construct morpholines with a gold(<scp>i</scp>)-catalyzed tandem ring-opening and cycloisomerization reaction. Organic and Biomolecular Chemistry, 2016, 14, 10973-10980.	2.8	26
16	Construction of porous covalent organic polymer as photocatalysts for RhB degradation under visible light. Science Bulletin, 2017, 62, 931-937.	9.0	25
17	An Artificial <scp>Lightâ€Harvesting</scp> System with Tunable Fluorescence Color in Aqueous Sodium Dodecyl Sulfonate Micellar Systems for Photochemical Catalysis. Chinese Journal of Chemistry, 2021, 39, 2725-2730.	4.9	24
18	A highly selective and sensitive luminescent chemosensor for Zn2+ ions based on cyclometalated platinum(ii) complexes. Dalton Transactions, 2013, 42, 4244.	3.3	22

LING-BAO XING

#	Article	IF	CITATIONS
19	KOHâ€Activated Porous Carbons Derived from Chestnut Shell with Superior Capacitive Performance. Chinese Journal of Chemistry, 2016, 34, 1093-1102.	4.9	22
20	Artificial light-harvesting supramolecular assemblies with different morphology formed by cucurbit[n]urils-based host-guest complexation. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 386, 112135.	3.9	20
21	Two-photon fluorescence visualization of lysosomal pH changes during mitophagy and cell apoptosis. Talanta, 2020, 209, 120549.	5.5	20
22	Supramolecular assemblies working as both artificial light-harvesting system and nanoreactor for efficient organic dehalogenation in aqueous environment. Journal of Colloid and Interface Science, 2022, 617, 118-128.	9.4	20
23	Construction of artificial light-harvesting systems in aqueous solution: Supramolecular polymers based on host-enhanced ï€â€''ï€ interaction with aggregation-induced emission. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 419-424.	3.9	18
24	Three Dimensional Sulfurâ€doped Graphene Hydrogels with Tetrathiafulvalene for High Performance Supercapacitors. Chinese Journal of Chemistry, 2016, 34, 46-52.	4.9	17
25	Artificial light-harvesting systems and their applications in photocatalysis and cell labeling. ChemPhysMater, 2022, 1, 281-293.	2.8	17
26	An amine functionalized rht-type metal-organic framework with the improved performance for gas uptake. Inorganic Chemistry Communication, 2014, 46, 13-16.	3.9	16
27	Significant enhancement of light-harvesting efficiency through the formation of [2]pseudorotaxane with γ-cyclodextrin based on a bolaamphiphile of salicylaldehyde azine moiety. Dyes and Pigments, 2019, 162, 475-480.	3.7	16
28	The novel PEI-modified biochars and their application for the efficient elimination of Cr(VI) from aqueous solutions. Water Science and Technology, 2018, 77, 2045-2056.	2.5	15
29	Tetraphenylethene-containing supramolecular hyperbranched polymers: aggregation-induced emission by supramolecular polymerization in aqueous solution. Polymer Chemistry, 2016, 7, 515-518.	3.9	14
30	Quadruple hydrogen bonded hyperbranched supramolecular polymers with aggregation-induced emission for artificial light-harvesting. Dyes and Pigments, 2019, 171, 107774.	3.7	14
31	The photophysical properties and imaging application of a new polarity-sensitive fluorescent probe. Analyst, The, 2020, 145, 6556-6561.	3.5	14
32	A photo-switchable supramolecular hyperbranched polymer with aggregation-induced emission based on host-guest interaction. Dyes and Pigments, 2019, 163, 594-599.	3.7	10
33	Ambient-pressure hydrogenation of ketones and aldehydes by a metal-ligand bifunctional catalyst [Cp*lr(2,2′-bpyO)(H2O)] without using base. Tetrahedron, 2019, 75, 130463.	1.9	9
34	The construction of an artificial light-harvesting system with two-step sequential energy transfer based on supramolecular polymers. Soft Matter, 2021, 17, 9871-9875.	2.7	9
35	Two-step sequential energy transfer of molecular assemblies based on host-guest interactions for the construction of photochemically catalyzed artificial light-harvesting systems. Dyes and Pigments, 2022, 197, 109895.	3.7	9
36	Nitrogen-Doped Graphene Aerogels with Three Dimensional Architectures for Multifunctional Applications in Supercapacitor and Absorption. Journal of Nanoscience and Nanotechnology, 2016, 16, 8451-8459.	0.9	8

LING-BAO XING

#	Article	IF	CITATIONS
37	Self-assembled reduced graphene hydrogels by facile chemical reduction using acetaldehyde oxime for electrode materials in supercapacitors. RSC Advances, 2016, 6, 48276-48282.	3.6	7
38	Dual-responsive vesicles formed by an amphiphile containing two tetrathiafulvalene units in aqueous solution. Organic and Biomolecular Chemistry, 2016, 14, 65-68.	2.8	6
39	A beryllium-selective microcantilever sensor modified with benzo-9-crown-3 functionalized polymer brushes. Analytical Methods, 2017, 9, 3356-3360.	2.7	6
40	Metal-free catalyst for the visible-light-induced photocatalytic synthesis of quinazolinones. Molecular Catalysis, 2021, 509, 111668.	2.0	6
41	Iridium-catalyzed synthesis of β-methylated secondary alcohols using methanol. Journal of Catalysis, 2022, 407, 90-96.	6.2	6
42	Three Dimensional Nitrogen-Doped and Nitrogen, Sulfur-Codoped Graphene Hydrogels for Electrode Materials in Supercapacitors. Journal of Nanoscience and Nanotechnology, 2018, 18, 5423-5432.	0.9	5
43	Ambient-pressure highly active hydrogenation of ketones and aldehydes catalyzed by a metal-ligand bifunctional iridium catalyst under base-free conditions in water. Journal of Catalysis, 2021, 399, 1-7.	6.2	5
44	Three-Dimensional Reduced Graphene Hydrogels Using Various Carbohydrates for High Performance Supercapacitors. Journal of Nanoscience and Nanotechnology, 2017, 17, 1099-1107.	0.9	4
45	Artificial light-harvesting supramolecular assemblies with controllable fluorescence intensity formed by cyclodextrin-based host-gost complexation. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 410, 113182.	3.9	4
46	Conformationâ€Controlled Diplatinum(II)–Ferrocene Dyads to Achieve Longâ€Lived Chargeâ€Separated States. Chemistry - A European Journal, 2016, 22, 11962-11966.	3.3	3
47	Superior capacitive performance of reduced graphene hydrogels via dimethyl ketoxime. Materials Letters, 2016, 176, 189-193.	2.6	3
48	Binuclear alkynylplatinum(<scp>ii</scp>) terpyridine complexes with flexible bridges behave as organogelators for several organic solvents. RSC Advances, 2017, 7, 14389-14394.	3.6	3
49	Dimethylsulfoxide-Dependent Environments for Fabricating Graphene Hydrogels for High-Performance Supercapacitor. Journal of Nanoscience and Nanotechnology, 2019, 19, 5755-5761.	0.9	3
50	Spin Crossover in a Series of Non-Hofmann-Type Fe(II) Coordination Polymers Based on [Hg(SeCN) ₃] ^{â^'} or [Hg(SeCN) ₄] ^{2–} Building Blocks. Inorganic Chemistry, 2021, 60, 11048-11057.	4.0	3
51	Highly Sensitive and Selective Fluoride Ion Sensors Based on Microcantilevers Modified with Hydrogels. Journal of Nanoscience and Nanotechnology, 2014, 14, 6632-6637.	0.9	2
52	Construction of supramolecular hyperbranched polymers based on a tetrathiafulvalene derivative: Self-assembly and charge transfer interaction with TCNQ. Tetrahedron Letters, 2021, 66, 152823.	1.4	2
53	Self-assembled vesicles from amphiphilic platinum(II) terpyridyl complex in water. Supramolecular Chemistry, 2015, 27, 298-302.	1.2	1
54	Metal-ligand cooperative iridium complex catalyzed C-alkylation of oxindole and 1,3-dimethylbarbituric acid using alcohols. Green Synthesis and Catalysis, 2023, 4, 246-252.	6.8	1

#	Article	IF	CITATIONS
55	Nanozymes based on coassembly of albumin and photosensitizer for photocontrolled RAFT polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126939.	4.7	Ο