
ZdzisÅ,aw Gosiewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5954674/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Time Minimization of Rescue Action Realized by an Autonomous Vehicle. Electronics (Switzerland), 2020, 9, 2099.	3.1	2
2	A dynamic model of a device with a parallel-serial structure to support the human lower limb. Technology and Health Care, 2018, 26, 577-594.	1.2	0
3	Genetic Algorithm for Mobile Robot Route Planning with Obstacle Avoidance. Acta Mechanica Et Automatica, 2018, 12, 151-159.	0.6	11
4	Towards implementation of a formation flying for efficient UAV operations. Journal of KONBiN, 2018, 48, 399-417.	0.4	0
5	Task and Context Sensitive Gripper Design Learning Using Dynamic Grasp Simulation. Journal of Intelligent and Robotic Systems: Theory and Applications, 2017, 87, 15-42.	3.4	17
6	Integration and In-Field Gains Selection of Flight and Navigation Controller for Remotely Piloted Aircraft System. Acta Mechanica Et Automatica, 2017, 11, 33-37.	0.6	2
7	Real time localization system with Extended Kalman Filter for indoor applications. , 2016, , .		7
8	Quasi-optimal locations of piezo-elements on a rectangular plate. European Physical Journal Plus, 2016, 131, 1.	2.6	10
9	A Ground Control Station for the UAV Flight Simulator. Acta Mechanica Et Automatica, 2016, 10, 28-32.	0.6	2
10	Two stage switching control for autonomous formation flight of unmanned aerial vehicles. Aerospace Science and Technology, 2015, 46, 221-226.	4.8	48
11	Computationaly Simple Obstacle Avoidance Control Law for Small Unmanned Aerial Vehicles. Acta Mechanica Et Automatica, 2015, 9, 50-56.	0.6	4
12	Kalman Filter Realization for Orientation and Position Estimation on Dedicated Processor. Acta Mechanica Et Automatica, 2014, 8, 88-94.	0.6	20
13	The Image Brightness Control System Dedicated For The Autonomous Unmanned Aerial Vehicle. Journal of KONBiN, 2014, 32, 71-82.	0.4	1
14	Virtual collocation of sensors and actuators for a flexible rotor supported by active magnetic bearings. , 2013, , .		10
15	Comparison of simulated and measured signals of the electromagnetic coil launcher for micro aerial vehicles. , 2013, , .		11
16	Fast prototyping method for the active vibration damping system of mechanical structures. Mechanical Systems and Signal Processing, 2013, 36, 136-151.	8.0	20
17	Simulation Model of an Electromagnetic Multi-Coil Launcher for Micro Aerial Vehicles. Solid State Phenomena, 2013, 198, 406-411.	0.3	9
18	A Stereovision System for Real Time Obstacle Avoidance by Unmanned Aerial Vehicle. Solid State Phenomena, 2013, 198, 159-164.	0.3	5

2

ZdzisÅ,aw Gosiewski

#	Article	IF	CITATIONS
19	Modelling of Dynamic and Control of Six-Rotor Autonomous Unmanned Aerial Vehicle. Solid State Phenomena, 2013, 198, 220-225.	0.3	9
20	Formation Flight Control Scheme forÂUnmanned Aerial Vehicles. Lecture Notes in Control and Information Sciences, 2012, , 331-340.	1.0	12
21	Vision-based obstacle avoidance for unmanned aerial vehicles. , 2011, , .		18
22	Control-Oriented Approach to the Rotor Dynamics. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2011, , 63-75.	0.2	0
23	The influence of the piezoelements placement on the active vibration damping of smart truss. Archives of Control Sciences, 2010, 20, .	1.7	1
24	Control-oriented Rotordynamics. Proceedings in Applied Mathematics and Mechanics, 2009, 9, 617-620.	0.2	0
25	Robust control of active magnetic suspension: Analytical and experimental results. Mechanical Systems and Signal Processing, 2008, 22, 1297-1303.	8.0	68
26	The Differential Passive Magnetic Bearing for High-Speed Flexible Rotor. Solid State Phenomena, 2008, 144, 273-278.	0.3	3
27	The Robust Control of Magnetic Bearings for Rotating Machinery. Solid State Phenomena, 2006, 113, 125-130.	0.3	13
28	A Robust Controller for Electrohydraulic Drives. Solid State Phenomena, 2006, 113, 61-66.	0.3	0
29	Coordination Technology in the Assembly Operations Design. , 2006, , .		3
30	Identification of Physical Parameters of Unstable Systems: Theoretical Background. Systems Analysis Modelling Simulation, 2003, 43, 301-311.	0.1	1
31	Vibration control algorithms for flexible rotors. Journal of Sound and Vibration, 1992, 157, 205-219.	3.9	1
32	Automatic balancing of flexible rotors, Part II: Synthesis of system. Journal of Sound and Vibration, 1987, 114, 103-119.	3.9	35
33	Automatic balancing of flexible rotors, part I: Theoretical background. Journal of Sound and Vibration, 1985, 100, 551-567.	3.9	40
34	Modeling of Beam as Control Plane for a Vibration Control System. Solid State Phenomena, 0, 144, 59-64.	0.3	3
35	Analysis of Robustness of Vibration Control System for a Magnetically Supported Shaft. Solid State Phenomena, 0, 144, 16-21.	0.3	0
36	Uncertainty Modeling in Robust Control of Active Magnetic Suspension. Solid State Phenomena, 0, 144, 22-26.	0.3	3

ZdzisÅ,aw Gosiewski

#	Article	IF	CITATIONS
37	Frequency Domain Identification of the Active Beam Model for the Vibration Control System. Solid State Phenomena, 0, 147-149, 320-325.	0.3	1
38	The Robust Control of Magnetic Suspension with Rapidly Changing of Rotor Speed. Solid State Phenomena, 0, 147-149, 302-307.	0.3	1
39	Static Model of a Rail Launcher. Solid State Phenomena, 0, 147-149, 456-461.	0.3	Ο
40	Selection of Coils Parameters in Magnetic Launchers. Solid State Phenomena, 0, 147-149, 438-443.	0.3	8
41	Introductory Analysis of the Bearingless Induction Motor. Solid State Phenomena, 0, 147-149, 143-148.	0.3	0
42	An FPGA Implementation of the Robust Controller for the Active Magnetic Bearing System. Solid State Phenomena, 0, 147-149, 399-409.	0.3	1
43	Modeling of Vertical Planar Two-Link Manipulator. Solid State Phenomena, 0, 164, 366-370.	0.3	Ο
44	UAV Autonomous Formation Flight Experiment with Virtual Leader Control Structure. Solid State Phenomena, 0, 198, 254-259.	0.3	19
45	Preliminary UAV Autopilot Integration and In-Flight Testing. Solid State Phenomena, 0, 198, 232-237.	0.3	19
46	Base Station for Monitoring of Unmanned Aerial Vehicle Flight. Solid State Phenomena, 0, 198, 182-187.	0.3	1
47	Laboratory Stand of an Electromagnetic Multi-Coil Launcher for Micro Aerial Vehicles. Solid State Phenomena, 0, 198, 334-339.	0.3	10
48	Numerical and Experimental Testing of Bearingless Induction Motor. Solid State Phenomena, 0, 198, 382-387.	0.3	2
49	Comparison of Electromagnetic Coil Launcher Model with Real-Device Characteristics. Solid State Phenomena, 0, 214, 58-66.	0.3	3
50	Reduction Methods of Structure Models for Control System Purposes. Solid State Phenomena, 0, 248, 119-126.	0.3	2