Sheng-Chuan Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5954642/publications.pdf Version: 2024-02-01

SHENG-CHUAN WIL

#	Article	IF	CITATIONS
1	The effect of manufacturing defects on the fatigue life of selective laser melted Ti-6Al-4V structures. Materials and Design, 2020, 192, 108708.	7.0	209
2	The imaging of failure in structural materials by synchrotron radiation X-ray microtomography. Engineering Fracture Mechanics, 2017, 182, 127-156.	4.3	168
3	A machine-learning fatigue life prediction approach of additively manufactured metals. Engineering Fracture Mechanics, 2021, 242, 107508.	4.3	149
4	The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion. International Journal of Fatigue, 2021, 151, 106317.	5.7	144
5	A new approach to correlate the defect population with the fatigue life of selective laser melted Ti-6Al-4V alloy. International Journal of Fatigue, 2020, 136, 105584.	5.7	133
6	An edge-based smoothed finite element method (ES-FEM) for analyzing three-dimensional acoustic problems. Computer Methods in Applied Mechanics and Engineering, 2009, 199, 20-33.	6.6	128
7	Thermal crack growth-based fatigue life prediction due to braking for a high-speed railway brake disc. International Journal of Fatigue, 2016, 87, 359-369.	5.7	99
8	Corrosion fatigue lifetime assessment of high-speed railway axle EA4T steel with artificial scratch. Engineering Fracture Mechanics, 2021, 245, 107588.	4.3	86
9	Probabilistic fatigue assessment for high-speed railway axles due to foreign object damages. International Journal of Fatigue, 2018, 117, 90-100.	5.7	78
10	On the fatigue performance of laser hybrid welded high Zn 7000 alloys for next generation railway components. International Journal of Fatigue, 2016, 91, 1-10.	5.7	76
11	A node-based smoothed point interpolation method (NS-PIM) for three-dimensional heat transfer problems. International Journal of Thermal Sciences, 2009, 48, 1367-1376.	4.9	75
12	Determination of the fatigue P-S-N curves – A critical review and improved backward statistical inference method. International Journal of Fatigue, 2020, 139, 105789.	5.7	75
13	The potency of defects on fatigue of additively manufactured metals. International Journal of Mechanical Sciences, 2022, 221, 107185.	6.7	72
14	Defect-correlated fatigue resistance of additively manufactured Al-Mg4.5Mn alloy with in situ micro-rolling. Journal of Materials Processing Technology, 2021, 291, 117039.	6.3	71
15	An edge-based smoothed point interpolation method (ES-PIM) for heat transfer analysis of rapid manufacturing system. International Journal of Heat and Mass Transfer, 2010, 53, 1938-1950.	4.8	65
16	Defect evolution during high temperature tension-tension fatigue of SLM AISi10Mg alloy by synchrotron tomography. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 792, 139809.	5.6	62
17	Electric field induced intermediate phase and polarization rotation path in alkaline niobate based piezoceramics close to the rhombohedral and tetragonal phase boundary. Applied Physics Letters, 2012, 100, .	3.3	60
18	On the fatigue performance and residual life of intercity railway axles with inside axle boxes. Engineering Fracture Mechanics, 2018, 197, 176-191.	4.3	60

#	Article	IF	CITATIONS
19	A novel virtual node method for polygonal elements. Applied Mathematics and Mechanics (English) Tj ETQq1	1 0.784314 r 3.6	gBJ_/Overloo
20	A node-based smoothed point interpolation method (NS-PIM) for thermoelastic problems with solution bounds. International Journal of Heat and Mass Transfer, 2009, 52, 1464-1471.	4.8	52
21	Corner fatigue cracking behavior of hybrid laser AA7020 welds by synchrotron X-ray computed microtomography. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 651, 604-614.	5.6	52
22	A physically short fatigue crack growth approach based on low cycle fatigue properties. International Journal of Fatigue, 2017, 103, 185-195.	5.7	52
23	Fatigue evaluation for high-speed railway axles with surface scratch. International Journal of Fatigue, 2019, 123, 79-86.	5.7	50
24	Cyclic plastic strain based damage tolerance for railway axles in China. International Journal of Fatigue, 2016, 93, 64-70.	5.7	48
25	Porosity induced fatigue damage of laser welded 7075-T6 joints investigated via synchrotron X-ray microtomography. Science and Technology of Welding and Joining, 2015, 20, 11-19.	3.1	46
26	On the residual life assessment of high-speed railway axles due to induction hardening. International Journal of Rail Transportation, 2018, 6, 218-232.	2.7	43
27	In situ X-ray imaging of fatigue crack growth from multiple defects in additively manufactured AlSi10Mg alloy. International Journal of Fatigue, 2022, 155, 106616.	5.7	42
28	A novel twice-interpolation finite element method for solid mechanics problems. Acta Mechanica Sinica/Lixue Xuebao, 2010, 26, 265-278.	3.4	41
29	Review on failure behaviors of fusion welded high-strength Al alloys due to fine equiaxed zone. Engineering Fracture Mechanics, 2019, 208, 45-71.	4.3	41
30	In-situ synchrotron X-ray tomography investigation of damage mechanism of an extruded magnesium alloy in uniaxial low-cycle fatigue with ratchetting. Acta Materialia, 2021, 211, 116881.	7.9	40
31	Effect of strain ratio on cyclic deformation behaviour of 7050-T6 aluminium alloy. International Journal of Fatigue, 2019, 129, 105234.	5.7	39
32	Fatigue life assessment of bogie frames in high-speed railway vehicles considering gear meshing. International Journal of Fatigue, 2020, 132, 105353.	5.7	39
33	A novel four-node quadrilateral element with continuous nodal stress. Applied Mathematics and Mechanics (English Edition), 2009, 30, 1519-1532.	3.6	36
34	The Kitagawa-Takahashi fatigue diagram to hybrid welded AA7050 joints via synchrotron X-ray tomography. International Journal of Fatigue, 2019, 125, 210-221.	5.7	36
35	A uniaxial tensile behavior based fatigue crack growth model. International Journal of Fatigue, 2020, 131, 105324.	5.7	36
36	A time-domain stepwise fatigue assessment to bridge small-scale fracture mechanics with large-scale system dynamics for high-speed maglev lightweight bogies. Engineering Fracture Mechanics, 2021, 248, 107711.	4.3	36

#	Article	IF	CITATIONS
37	Fatigue resistance and remaining life assessment of induction-hardened S38C steel railway axles. International Journal of Fatigue, 2021, 144, 106068.	5.7	35
38	High-cycle and very-high-cycle fatigue lifetime prediction of additively manufactured AlSi10Mg via crystal plasticity finite element method. International Journal of Fatigue, 2022, 155, 106577.	5.7	35
39	Collaborative crack initiation mechanism of 25CrMo4 alloy steels subjected to foreign object damages. Engineering Fracture Mechanics, 2020, 225, 106844.	4.3	32
40	Microstructure understanding of high Cr-Ni austenitic steel corrosion in high-temperature steam. Acta Materialia, 2022, 226, 117634.	7.9	32
41	Assessment of smoothed point interpolation methods for elastic mechanics. International Journal for Numerical Methods in Biomedical Engineering, 2010, 26, 1635-1655.	2.1	31
42	An extended finite element method (XFEM) for linear elastic fracture with smooth nodal stress. Computers and Structures, 2017, 179, 48-63.	4.4	30
43	An adaptively refined XFEM with virtual node polygonal elements for dynamic crack problems. Computational Mechanics, 2018, 62, 1087-1106.	4.0	30
44	Effect of microstructural features on the failure behavior of hybrid laser welded AA7020. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 2010-2023.	3.4	29
45	The virtual node polygonal element method for nonlinear thermal analysis with application to hybrid laser welding. International Journal of Heat and Mass Transfer, 2013, 67, 1247-1254.	4.8	28
46	Near-tip strain evolution and crack closure of growing fatigue crack under a single tensile overload. International Journal of Fatigue, 2020, 134, 105478.	5.7	27
47	High-resolution characterization of the internal and external oxidation of austenitic alloys in supercritical water. Scripta Materialia, 2021, 197, 113814.	5.2	26
48	Fatigue life evaluation of Ti–6Al–4V welded joints manufactured by electron beam melting. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 2210-2221.	3.4	26
49	Influence of in situ micro-rolling on the improved strength and ductility of hybrid additively manufactured metals. Engineering Fracture Mechanics, 2021, 253, 107868.	4.3	26
50	Prediction of fatigue crack growth based on low cycle fatigue properties. International Journal of Fatigue, 2014, 61, 220-225.	5.7	24
51	Effect of tensile pre-strain on low-cycle fatigue behaviour of 7050-T6 aluminium alloy. Engineering Failure Analysis, 2020, 114, 104592.	4.0	24
52	A Node-based Smoothed Point Interpolation Method (NS-PIM) for Three-dimensional Thermoelastic Problems. Numerical Heat Transfer; Part A: Applications, 2008, 54, 1121-1147.	2.1	23
53	A SMOOTHED FEM (S-FEM) FOR HEAT TRANSFER PROBLEMS. International Journal of Computational Methods, 2013, 10, 1340001.	1.3	22
54	Experimental Investigations on the Effects of Fatigue Crack in Urban Metro Welded Bogie Frame. Applied Sciences (Switzerland), 2020, 10, 1537.	2.5	20

#	Article	IF	CITATIONS
55	A novel mesh-free poly-cell Galerkin method. Acta Mechanica Sinica/Lixue Xuebao, 2009, 25, 517-527.	3.4	19
56	Hot dwell-fatigue behaviour of additively manufactured AlSi10Mg alloy: Relaxation, cyclic softening and fracture mechanisms. International Journal of Fatigue, 2021, 151, 106408.	5.7	19
57	Fatigue behaviors of laser hybrid welded AA7020 due to defects via synchrotron Xâ€ray microtomography. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 2232-2246.	3.4	16
58	On the Microstructural and Mechanical Characterization of Hybrid Laser-Welded Al-Zn-Mg-Cu Alloys. Journal of Materials Engineering and Performance, 2015, 24, 1540-1550.	2.5	15
59	Damage Tolerance Assessment of a Brake Unit Bracket for High-Speed Railway Welded Bogie Frames. Chinese Journal of Mechanical Engineering (English Edition), 2019, 32, .	3.7	15
60	Uncertainty propagation method for probabilistic fatigue crack growth life prediction. Theoretical and Applied Fracture Mechanics, 2019, 103, 102268.	4.7	15
61	Experimental characterization and numerical modeling on the external impacting of high-speed railway axle EA4T steel. Engineering Failure Analysis, 2021, 125, 105449.	4.0	15
62	Fine equiaxed zone induced softening and failure behavior of 7050 aluminum alloy hybrid laser welds. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 821, 141597.	5.6	15
63	X-ray imaging of defect population and the effect on high cycle fatigue life of laser additive manufactured Ti6Al4V alloys. International Journal of Fatigue, 2022, 162, 106979.	5.7	15
64	A TWICE-INTERPOLATION FINITE ELEMENT METHOD (TFEM) FOR CRACK PROPAGATION PROBLEMS. International Journal of Computational Methods, 2012, 09, 1250055.	1.3	14
65	An adaptively refined XFEM for the dynamic fracture problems with micro-defects. Theoretical and Applied Fracture Mechanics, 2019, 103, 102255.	4.7	14
66	Three-dimensional correlation of damage criticality with the defect size and lifetime of externally impacted 25CrMo4 steel. Materials and Design, 2020, 195, 109001.	7.0	14
67	Surface rolling deformed severity-dependent fatigue mechanism of Ti-6Al-4V alloy. International Journal of Fatigue, 2022, 158, 106732.	5.7	14
68	In-situ X-ray tomography on permeability evolution of C/SiC porous ceramic for hypersonic vehicles. Ceramics International, 2021, 47, 27770-27777.	4.8	13
69	Meshless analysis of the substrate temperature in plasma spraying process. International Journal of Thermal Sciences, 2009, 48, 674-681.	4.9	12
70	Cracking evolution behaviors of lightweight materials based on in situ synchrotron X-ray tomography: A review. Frontiers of Mechanical Engineering, 2018, 13, 461-481.	4.3	12
71	Damage evolution of extruded magnesium alloy from deformation twinning and dislocation slipping in uniaxial stress-controlled low cycle fatigue. International Journal of Fatigue, 2022, 164, 107124.	5.7	12
72	Microstructural and failure mechanism of laser welded 2A97 Al–Li alloys via synchrotron 3D tomography. International Journal of Lightweight Materials and Manufacture, 2018, 1, 169-178.	2.1	11

#	Article	IF	CITATIONS
73	Internal crack characteristics in very-high-cycle fatigue of a gradient structured titanium alloy. Scientific Reports, 2020, 10, 4742.	3.3	11
74	Effects of microstructural heterogeneity on fatigue properties of cast aluminum alloys. Journal of Central South University, 2020, 27, 674-697.	3.0	10
75	The role of defects on tensile deformation and fracture mechanisms of AM AlSi10Mg alloy at room temperature and 250 ŰC. Engineering Fracture Mechanics, 2022, 261, 108215.	4.3	10
76	Corrosion fatigue mechanism and life prediction of railway axle EA4T steel exposed to artificial rainwater. Engineering Failure Analysis, 2022, 138, 106319.	4.0	10
77	A HIGH PERFORMANCE LARGE SPARSE SYMMETRIC SOLVER FOR THE MESHFREE GALERKIN METHOD. International Journal of Computational Methods, 2008, 05, 533-550.	1.3	9
78	Structural fatigue crack growth on a representative volume element under cyclic strain behavior. International Journal of Fatigue, 2015, 74, 1-6.	5.7	9
79	High-Cycle Microscopic Severe Corrosion Fatigue Behavior and Life Prediction of 25CrMo Steel Used in Railway Axles. Metals, 2017, 7, 134.	2.3	9
80	Experimental study on mechanical properties of laser powder bed fused Ti-6Al-4V alloy under post-heat treatment. Engineering Fracture Mechanics, 2022, 261, 108264.	4.3	8
81	ES-PIM with Cell Death and Birth Technique for Simulating Heat Transfer in Concrete Dam Construction Process. Journal of Engineering Mechanics - ASCE, 2012, 138, 133-142.	2.9	7
82	Fatigue strength assessment of high-speed railway axle EA4T steel with foreign object damage. Engineering Failure Analysis, 2022, 133, 105961.	4.0	7
83	The microstructure, mechanical, and fatigue behaviours of MAG welded C20Mn5 cast steel. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 1051-1063.	3.4	6
84	Experimental insight on the fatigue resistance of FV520B-I stainless steel under corrosive environments. International Journal of Fatigue, 2022, 159, 106786.	5.7	5
85	An innovative stepwise time-domain fatigue methodology to integrate damage tolerance into system dynamics. Vehicle System Dynamics, 2023, 61, 550-572.	3.7	5
86	Corrosion Fatigue-Cracking Behaviors of Low Alloy Steels in Seawater for Offshore Engineering Structures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 2369-2382.	2.2	5
87	Microstructure and phase constitution near the interface of Cu/3003 torch brazing using Al-Si-La-Sr filler. Journal of Mechanical Science and Technology, 2012, 26, 4089-4096.	1.5	4
88	Online estimation of fatigue damage of railway bogie frame based on axle box accelerations. Vehicle System Dynamics, 2023, 61, 286-308.	3.7	4
89	Influence of wheel outâ€ofâ€roundness on the remaining life of railway wheels under mixedâ€mode fatigue loading. Fatigue and Fracture of Engineering Materials and Structures, 2022, 45, 2072-2085.	3.4	4
90	Certified solutions for hydraulic structures using the nodeâ€based smoothed point interpolation method (NSâ€PIM). International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34, 1560-1585.	3.3	3

#	Article	IF	CITATIONS
91	Fracture mechanics based residual life prediction of railway heavy coupler with measured load spectrum. International Journal of Fracture, 0, , 1.	2.2	3
92	Effects of micro-shot peening on the defect tolerance of Al-Si-0.6Mg alloy containing artificial defect. Journal of Alloys and Compounds, 2022, 921, 166170.	5.5	3
93	Nonlinear Transient Heat Transfer Problems using the Meshfree ES-PIM. International Journal of Nonlinear Sciences and Numerical Simulation, 2010, 11, .	1.0	2
94	Research of High Speed Train Carbody Structure Vibration Behaviors and Structure Fatigue Strength Characteristic Technology. Advanced Materials Research, 2012, 544, 256-261.	0.3	2
95	Secondary phase induced cracking initiation of high-speed railway gearbox. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 799, 140064.	5.6	2
96	Coupled influence of pore defects on the failure site for high-speed railway gearbox material. Engineering Fracture Mechanics, 2022, 261, 108216.	4.3	2
97	Fatigue Property and Fracture Behavior of 7020 Aluminum Alloys Welded by Laser-MIG Hybrid Welding. Zhongguo Jiguang/Chinese Journal of Lasers, 2018, 45, 0302003.	1.2	1
98	The CRM of Tomorrow with Semantic Technology. Communications in Computer and Information Science, 2012, , 46-51.	0.5	0
99	Computing in Railway Engineering. Computing in Science and Engineering, 2019, 21, 4-5.	1.2	0
100	Improved backward fatigue statistical inference to the high-speed railway vehicle components. Procedia Structural Integrity, 2019, 22, 211-218.	0.8	0
101	<i>In situ</i> Xâ€ray tomography of sintered metal fiber felts exhibiting auxetic effect under tension and compression. Advanced Engineering Materials, 0, , .	3.5	0
102	Computational Methods for Fatigue and Fracture. Metals, 2022, 12, 739.	2.3	0